[2]

[5]

[3]

[5]

[5]

[2]

B. Sc. Honours Examination-2020

Semester-I(CBCS)
Mathematics
Core course:CC-1
(Analysis-I)

Time: Three Hours

1. (a) State Bolzano-Weierstrass theorem.

(c) Prove that \mathbb{N} is unbounded above.

2. (a) Let $S = \{(-1)^n + \frac{1}{n} : n \in \mathbb{N}\}$. Find S'.

Full Marks: 60

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any six questions.

(b) Let S be a bounded subset of \mathbb{R} with SupS = M and InfS = m. Prove that the set $T = \{x - y : x \in S, y \in S\}$ is a bounded set with SupT = M - m and InfT = m - M.

	(b) Is \mathbb{Q} dense in \mathbb{R} ? Justify your answer.	[3]
	(c) Applying L'Hospital rule, find $\lim_{x\to 0} \frac{x-\tan x}{x^3}$.	[2]
3.	(a) For any $A, B \subset \mathbb{R}$, prove that $(A \cap B)' \subset A' \cap B'$. Is the converse true? Justify .	[3]
	(b) State and prove Rolle's theorem.	[5]
	(c) Applying LMVT prove that, $0 < log_e(\frac{e^x - 1}{x}) < x, \ x > 0$.	[2]
4.	(a) If f' exist in $[0,1]$, show that the equation $2x(f(1)-f(0))=f'(x)$ has at least one solution in $(0,1)$.	[3]
	(b) Find a, b, c such that $\lim_{x\to 0} \frac{ae^x - b\cos x + ce^{-x}}{x\sin x} = 2$.	[5]
	(c) If $y = \sin pt$, $x = \sin t$, prove that $(1 - x^2)y_2 - xy_1 + p^2y = 0$.	[2]
5.	(a) If $y = \sin(m\sin^{-1}x)$, prove that	
	(i) $(1-x^2)y_2 - xy_1 + m^2y = 0$	
	(ii) $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$	
		[3+3]
	(b) If $f'(x) \ge 0$ on [1, 2], then prove that $f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2}$, $\forall x, y \in [1, 2]$.	[4]
6.	(a) By using $(\epsilon - \delta)$ definition, evaluate $\lim_{x \to 2} \frac{2x^2 - 8}{x - 2}$ and find δ if $\epsilon = 0.1$.	[3]

(b) If $\lim_{x\to a} f(x) = l$ and $\lim_{x\to a} g(x) = m \neq 0$ then prove that $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{l}{m}$.

(c) Verify whether $\lim_{x\to 0} \frac{2x+|x|}{2x-|x|}$ exists or not.

[4]

[4]

[5]

[3]

[2]

[6]

[1]

7. (a) Examine the continuity of the function

$$f(x) = \begin{cases} \frac{x^4 + 4x^3 + 2x}{\sin x} & \text{when } x \neq 0\\ 0 & \text{when } x = 0 \end{cases}$$

- at x = 0. [2]
- (b) Let $f:[a,b]\to [c,d]$ and $g:[c,d]\to [e,f]$ be two continuous mappings. Prove that $g\circ f:[a,b]\to [e,f]$ is continuous.
- (c) A function $f: \mathbb{R} \to \mathbb{R}$ satisfies the condition $f(x+y) = f(x)f(y) \ \forall x,y \in \mathbb{R}$. If f is continuous at x = 0, prove that f is continuous on \mathbb{R} .
- 8. (a) State and prove nested intervals theorem.
 - (b) Find the limit of the sequence $\{x_n\}$ where $x_n = (2^n + 3^n)^{1/n}$.
 - (c) Evaluate $\lim_{n\to\infty} \sqrt[n]{n}$.
- 9. (a) Prove that a sequence is convergent iff it is a Cauchy sequence.
 - (b) Give an example of a sequence of rational numbers that converges to an irrational number.
 - (c) Evaluate $\lim_{n\to\infty} \frac{1}{n} \{ (2n+1)(2n+2)\cdots(2n+n) \}^{1/n}$. [3]

Full Marks: 60

B. A./B. Sc. Examination-2020 Semester-I Mathematics CCMA 2 (Algebra I)

Time: Three Hours

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any six questions.

1. (a) Define zero of a polynomial. Find the multiple root(s) of the polynomial $x^4 - 9x^2 + 4x + 12 = 0$ and solve the equation.

[1+4]

(b) State and prove the factor theorem.

[3] [2]

(c) If $x^2 + px + 1$ is a factor of the polynomial $ax^3 + bx + c$, then show that $a^2 - c^2 = ab$.

3x + k = 0 can have at most three real roots for every real number k.

[3]

(a) Let a₁, a₂, a₃, a₄ be the four roots of the equation x⁴ + p₁x³ + p₂x² + p₃x + p₄ = 0. Find the value of (1 + a₁²)(1 + a₂²)(1 + a₃²)(1 + a₄²).
(b) State the Descarte's rule of signs. Using the Descarte's rule of signs, show that the equation x⁷ + 5x⁴ -

[1+4]

(c) Form a biquadratic equation with real coefficients two of whose roots are given by $3i \pm 5$.

[2]

3. (a) Let α, β, γ be three roots of the equation $x^3 + qx + r = 0$. Find the equation whose roots are $\frac{1}{\alpha} + \frac{1}{\beta} + 1, \frac{1}{\beta} + \frac{1}{\gamma} + 1, \frac{1}{\gamma} + \frac{1}{\alpha} + 1$. Hence or otherwise find the value of $(\alpha + \beta + \alpha\beta)(\beta + \gamma + \beta\gamma)(\gamma + \alpha + \gamma\alpha)$.

[4+1]

(b) Reduce the cubic equation $8x^3 - 36x^2 + 42x - 5 = 0$ to its standard form and then solve by the Cardan's method.

[5]

4. (a) Show that every matrix is row equivalent to a unique matrix in reduced row echelon form.

[5]

(b) Find an equation involving g, h and k that makes the augmented matrix $\begin{pmatrix} 1 & -4 & 7 & g \\ 0 & 3 & -5 & h \\ -2 & 5 & -9 & k \end{pmatrix}$ correspond to a consistent system. Hence or otherwise find span((1,0,-2),(-4,3,5),(7,-5,-9)).

[3+2]

5. (a) Show that the system

$$y + 2z - 3w = 0$$

$$x - y + z - 2w = 0$$

$$-x - 3z + 5w = 0$$

$$x + y + 5z - 8w = 0$$

[2+3]

has infinitely many solutions. Find a basis and dimension of the solution space.

(b) Suppose the coefficient matrix of a system of linear equations has a pivot position in every row. Explain why the system is consistent. Find with justification if the system has unique solution.

[3+2]

6. (a) Let A be an $m \times n$ matrix. Prove that the system Ax = b has a solution for every $b \in \mathbb{R}^m$ if and only if r(A) = m.

[4]

(b) Let $v_1 = (3, 0, 2)$ and $v_2 = (2, 0, 3)$. Give a geometric description of $span(v_1, v_2)$ without finding it explicitly.

[3]

(c) Let v_1, v_2, \dots, v_m be m vectors in \mathbb{R}^n . Prove that they are linearly dependent if and only if either of them is a linear combination of the others.

[3]

7. (a) Let A be a 3×3 matrix with the property that the system AX = b has unique solution for some $b \in \mathbb{R}^3$. Explain why the columns of A span \mathbb{R}^3 .

[3]

(b) Show that every subspace of \mathbb{R}^n has a basis.

[4]

(c) Find the row space of the matrix $A = \begin{pmatrix} 1 & -2 & 3 \\ 5 & -4 & 3 \\ 9 & -3 & -3 \end{pmatrix}$. Show that the solution space of AX = 0 is orthogonal to the row space.

[3]

[4]

[3]

[3]

[4]

[4]

[2]

- 8. (a) Prove that the pivot columns of A form a basis of the column space C(A).
 - (b) Suppose that $\mathbb{R}^3 = span(\alpha, \beta, \gamma)$. Explain why $\{\alpha, \beta, \gamma\}$ is a basis of \mathbb{R}^3 .
 - (c) Show that a non null proper subspace of \mathbb{R}^3 is either a line through the origin or a plane through the origin.
- 9. (a) Let A be an $n \times n$ matrix. Prove that the columns of A form a basis of \mathbb{R}^n if and only if A is invertible.
 - (b) Find the eigen values of the matrix $\begin{pmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix}$ and the eigen vectors belonging to some one of the eigen values.

•

(c) Let A be a square matrix such that $A^2 = 0$. Show that 0 is the only eigen value of A.