B. Sc. (Honours) Examination-2021

Semester-III (CBCS)

Mathematics

Course: CCMA-5 (Analysis III)

Time: Three Hours Full Marks: 60

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

		v	
		Answer $any six$ questions.	
1.	(a)	Examine whether the series $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{e^n}$ ($\alpha > 0$) is convergent.	[3]
		n=1	[4]
		Let $\{a_n\}$ be a monotone decreasing sequence of non-negative real numbers su	ch
			[4]
2.		2- 30- 31-	[4]
	(b)	Find all suitable values of b_n $(n \ge 1)$ such that $\sum a_n b_n$ converges if and only	
	()		[4]
2			[2]
ა.	(a)	Let $f: I \longrightarrow \mathbb{R}$ be a nonconstant function on an interval I . Is $f(I)$ necessarily interval? Justify your answer	
	(b)		[4]
		Show by examples that a real-valued continuous function on an interval may	L .
	(-)		3
4.	(a)	Discuss the difference of the continuity and uniform continuity of a function	٠.
		some interval $[a,b]$. Determine whether the function $f:[0,1] \longrightarrow \mathbb{R}$ defined	bу
		$f(x) = \sqrt{x}$ is uniformly continuous on [0, 1].	
	(b)	If a function $f:[a,b] \longrightarrow \mathbb{R}$ possesses the intermediate value property on $[a,b]$ and	
		$f(x) \neq f(y)$ for any two distinct points $x, y \in [a, b]$, then show that f is uniform	ιIJ
5	(0)	continuous on $[a, b]$. What are the total varieties and the varieties function of a function of bound	4
J.	(a)	What are the total variation and the variation function of a function of bound variation on a closed and bounded interval? Show that the variation function V	
		a continuous function $f:[a,b] \longrightarrow \mathbb{R}$ is continuous on $[a,b]$.	
	(b)	Let $I = [a, b]$. Then prove or disprove: A uniformly continuous function on I is	
	()		[4]
6.	(a)	Let $f:[a,b] \longrightarrow \mathbb{R}$ be a bounded function on $[a,b]$. Define the Riemann integral	a
		v 11	[4]
	(b)	If $f:[a,b] \longrightarrow \mathbb{R}$ is a bounded function on $[a,b]$ such that f^2 is Riemann integral	
	()		[3
	(c)	Examine whether the function $f:[0,1] \longrightarrow \mathbb{R}$ defined by	
		$f(x) = \begin{cases} 3n+2 & \text{for } x = \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$ (where $n = 1, 2,$)	

is Riemann integrable on [0,1].

- 7. (a) If $f:[a,b] \longrightarrow \mathbb{R}$ be Riemann integrable function on [a,b], then show that the function $g:[a,b] \longrightarrow \mathbb{R}$ defined by $g(x) = \int_a^x f(t)dt$ is continuous on [a,b]. [4] (b) State the Fundamental Theorem of Integral Calculus. Examine whether we can
 - (b) State the Fundamental Theorem of Integral Calculus. Examine whether we can apply it to evaluate the integral $\int_1^3 f dx$ of the function $f:[1,3] \longrightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} 3 & \text{for } 1 \le x < 2 \\ 5 & \text{for } 2 \le x \le 3 \end{cases}$$

[2+4]

- 8. (a) What do you mean by ' $f \in \mathcal{R}(\alpha)$ on [a,b]' for suitable functions f and α ? If $\alpha:[a,b] \longrightarrow \mathbb{R}$ is continuous on [a,b] and $f:[a,b] \longrightarrow \mathbb{R}$ is monotone increasing on [a,b], then show that $\int_a^b \alpha df = \alpha(c)[f(b)-f(a)]$ for some $c \in [a,b]$. [2+4]
 - (b) Examine whether $x [x] \in \mathcal{R}(\sin x)$ on $[0, \frac{\pi}{2}]$ and evaluate $\int_0^{\frac{\pi}{2}} (x [x]) d(\sin x)$, if it exists.

[3]

B. Sc. Examination-2021

Semesester-III(CBCS) Mathematics Core Course: CC-6 (Algebra-III)

Time: Three Hours Full Marks: 60

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings. Answer $all\ three$ questions.

1.	Ans	wer any two questions. $(10 \times 2 = 20)$	
	(a)	i. Show that the elements in A_n are product of 3-cycles. Let $\beta \in S_7$ and suppose $\beta^4 = (2143567)$. Find β .	[3+2]
		ii. Find group elements α and β in S_5 such that $ \alpha = 3$, $ \beta = 3$, and $ \alpha\beta = 5$.	[3]
		iii. Show that in $S_n (n \ge 4)$, the equation $x^2 = (1234)$ has no solutions.	
	(b)	i. Describe and discuss the natures of all subgroups of the noncommutative group Q_8 . Are there any similarities with the subgroups of an abelian group? Justify	[4+1]
		ii. Let G be a group and $[G:Z(G)]=4$, then find the orders of the elements of the group $G/Z(G)$. Can you find any similarities with the Kelin's 4-group? Justify	[2+1]
		iii. Show, by example, that in a quotient group G/H it can happen that $aH = bH$ but $O(a) \neq O(b)$.	
	(c)	i. Let G be a finite group. Then prove that $a^{ G } = e$ for all $a \in G$. Suppose that K is a proper subgroup of H and H is a proper subgroup of G . If $ K = 42$ and	
		G = 420, what are the possible orders of H ?	[3+2]
		ii. Let H be a subgroup of R^* , the group of nonzero real numbers under multiplication. If $R^+ \subseteq H \subseteq R^*$, prove that either $H = R^+$ or $H = R^*$.	[3]
		iii. Prove that the order of the group U_n is even when $n > 2$.	[2]
2.	Ans	wer <i>any two</i> questions. $(10 \times 2 = 20)$	
	(a)	Find the group of all units in $\mathbb{Z}[i]$.	[2]
	(b)	Show that every Boolean ring is commutative. Give example of a nonzero Boolean ring other than \mathbb{Z}_2 and products of \mathbb{Z}_2 .	[3]
	(c)	Let R be a commutative ring. If $u \in R$ is a unit and $a \in R$ is a nilpotent element, then show that $u + a$ is a unit in R .	[3]
	(d)	Let R be a ring such that $x^3 = x$ for all $x \in R$. Show that the characteristic of R is finite and is a divisor of 6.	[2]
3.	(a)	Give an example with justification of a division ring which is not a field.	[2]
		Prove that the characteristic of a finite field is a prime integer.	[3]
	(c)	Show that there is no integral domains of six elements.	[3]
	(d)	Let R be a ring with 1 such that any two nonzero elements in R is nonzero. Show that for every $a, b \in R$, $ab = 1$ if and only if $ba = 1$.	[2]
4.	(a)	Find the smallest subring of \mathbb{R} containing $\sqrt[3]{2}$.	[2]

(b) Let R be a commutative ring with 1. If R is simple then show that it is a field. Give

an example of a simple noncommutative ring with 1.

[2]

[3]

[4+1]

[2+3]

[3]

[3]

[4]

[4]

[6]

- (c) Show that $12\mathbb{Z} + 28\mathbb{Z} = 4\mathbb{Z}$.
- (d) Show that $I = \{a+ib \in \mathbb{Z}[i] \mid a \text{ and } b \text{ are even} \}$ is an ideal of the ring $\mathbb{Z}[i]$ of Gaussian integers. Find the number of elements of the quotient ring $\mathbb{Z}[i]/I$.
- 5. Answer *any two* questions. $(2 \times 10 = 20)$
 - (a) i. Show that every field is a vector space over a subfield of it. Give an example with proper justification to show that a subfield may not be a vector space over its field.
 - ii. Show that the set $W = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 7a_2 + a_3 = 0\}$ forms a subspace of \mathbb{R}^3 . Hence find a subspace W' of \mathbb{R}^3 such that $\mathbb{R}^3 = W \oplus W'$.
 - (b) i. Let $W = \{A \in M_{2\times 2}(\mathbb{R}) : \operatorname{Trace}(A) = 0\}$. Find a smallest generating set for W.
 - ii. Give an example of a linearly independent set having more than one element for the vector space $P(\{1,2,3\})$ over the field \mathbb{Z}_2 .
 - iii. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then show that $S \cup \{v\}$ is linearly dependent if and only if $v \in span(S)$.
 - (c) i. Let V be finite dimensional vector space over F. Then show that every linearly independent subset of V can be extended to a basis of V.
 - ii. Find the dimension of the subspace $W_1 + W_2$ of \mathbb{R}^3 where $W_1 = \{(a, b, c) : a + b + c = 0\}$ and $W_2 = \{(a, b, c) : a = b = c\}$ are two subspaces of \mathbb{R}^3 .

 $[10 \times 2 = 20]$

[2]

[2]

[2]

[3]

[2]

[1]

[3]

[4]

[3]

[4]

[3]

[2]

[1]

[3]

[4]

B. Sc.(H) Examination-2021

Semester-III

Mathematics

Core Course: CC-7 (Differential Equations-I)

Time: Three Hours

(c) Solve: $\frac{dy}{dx} = \frac{7xy + y^2}{7x^2}$.

1. Answer any ten questions from the following:

(b) Solve: $(D^2 + 9)^2(D^2 + 3D + 2)^2(D + 2)^3y = 0$.

(a) Solve the differential equation $(1 + e^{\frac{x}{y}})dx + e^{\frac{x}{y}}(1 - \frac{x}{y})dy = 0$.

Full Marks: 60

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer Question No. 1 and any four from the rest.

(-	$\frac{1}{2}$	[-]
(d) Find a second order linear homogeneous differential equation whose linearly independent solutions are x , and xe^x .	[2]
(6	Find the orthogonal trajectories of the family of parabolas $cy^2 = x^3$.	[2]
(1	Solve the nonlinear differential equation $\sin(x\frac{dy}{dx})\cos y = \cos(x\frac{dy}{dx})\sin y + \frac{dy}{dx}$.	[2]
(g	Find four different solutions of the differential equation $\frac{dy}{dx} = y^{2/3}$, $y(0) = 0$.	[2]
(h	Solve: $y \frac{d^2y}{dx^2} = (\frac{dy}{dx})^2$.	[2]
(Let $y(x)$ be the solution of the differential equation $\frac{dy}{dx} = (y-11)(y-19)(y-25)$ satisfying the initial condition $y(0) = 15$. Find the value of $y(x)$ when $x \to \infty$.	[2]
(.) Consider the differential equation $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = 0$. If $W(1) = 1$, then find the value of $W(7) - W(3)$.	[2]
(k	Find an integrating factor of the differential equation $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$.	[2]
(Explain why it is always possible to solve any homogeneous differential equation $M(x,y)dx+N(x,y)dy=0$ by the substitution $y=vx$.	[2]
(m	Explain why there exists no constant solution of the differential equation $\frac{dy}{dx} = y^2 + 16$.	[2]
(n) Find the solution of $x \frac{dy}{dx} = y^2 - y$ that passes through the point $(2, 1/4)$.	[2]
2. (a	Solve the second order linear differential equation $\frac{d^2y}{dx^2} - y = x\cos 2x + x^2 + e^{3x}$.	[4]
(b	Prove that the transformation $v = y^{1-n} (n \neq 0 \text{ or } 1)$ reduces the Bernoulli equation $\frac{dy}{dx} = P(x)y + Q(x)y^n$ to a linear equation in y . Hence a least the approximation $\frac{dy}{dx} = \frac{1}{2} x^n + $	[6]

3. (a) Solve the differential equation $y = (x - b)p + \frac{a}{p}$.

arbitrary constant.

(d) Solve: $\frac{dy}{dx} = tan^2(x+y)$.

(b) Using the method of undetermined coefficients, solve the equation $D^2(D-1)y = 3e^x + sinx$.

(c) If u and v are any two solutions of the equation $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$ on an interval [a, b], then prove that their Wronskian W(u, v) is either identically zero or never zero on [a, b].

(c) Find the differential equation corresponding to the family of curves $y = k(x - k)^2$, where k is an

4. (a) Verify that the equation $(2x^2 + 3x)y'' + (6x + 3)y' + 2y = (x + 1)e^x$ is exact and then solve it.

(b) Solve the differential equation (x - 3y + 3)dx + (3x + y + 9)dy = 0.

(c) One solution of the Legendre differential equation $(1 - x^2)y'' - 2xy' + 2y = 0$ is y = x. Find a second solution.

(d) Convert the differential equation $y = xf(p) + \phi(p)$ to a linear equation in x.

 $Q(x)y^n$ to a linear equation in v. Hence solve the equation $\frac{dy}{dx} - y = e^x y^2$.

5. (a) Using the method of variation of parameters, solve the equation $(D^2 + 1)y = f(x)$, where f(x) is a known integrable function.

(b) Find the singular solution and extraneous loci of the differential equation $4xp^2 = (3x - 5)^2$.

[3]

[4]

[3]

[2]

[1]

[3]

[4]

[3]

- (c) Solve the equation $x^2y'' + xy' y = x^4e^{3x}$.
- 6. (a) Solve the differential equation $\frac{dy}{dx} + y = f(x)$ with initial condition y(0) = 1, where f(x) = 1, when $0 \le x < 1$ and f(x) = -1, when $x \ge 1$. Hence find the value of y(5).
 - (b) Reduce the equation $(x^2 + y^2)(1 + p)^2 2(x + y)(1 + p)(x + py) + (x + py)^2 = 0$ to Clairaut's form by the substitution $x^2 + y^2 = v$ and x + y = u. Hence solve the equation.
 - (c) Solve: $\frac{d^4y}{dx^4} \cot x \frac{d^3y}{dx^3} = 0.$
 - (d) Use the method of isoclines to sketch some of the solution curves of the equation $\frac{dy}{dx} = x + y + 1$.
- 7. (a) If $e^{\int \phi\left(\frac{x^2}{y}\right)d\left(\frac{x^2}{y}\right)}$ is an integrating factor of the differential equation M(x,y)dx + N(x,y)dy = 0, then find the expression of $\phi\left(\frac{x^2}{y}\right)$.
 - (b) Show that if f is any solution of the differential equation $\frac{dy}{dx} = A(x)y^2 + B(x)y + C(x)$, then the transformation $y = f + \frac{1}{v}$ reduces the above differential equation to a linear in v. Hence solve the equation $\frac{dy}{dx} = -y^2 + xy + 1$; given solution f(x) = x.
 - (c) Find the equation of the family of curves which cut the members of the family of parabolas $y^2 = 4ax$ at angle of 45^o .

B. Sc. (Honours) Examination-2021

Semester-III (CBCS)

Mathematics

Course: SECMA-1

(Boolean Algebra and Circuit Design)

Time: Two Hours Full Marks: 25

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any five questions.

1. (a) Let A be the set of all positive divisors of n and define for $a, b, c \in A$

$$a+b=$$
 l.c.m of a and b ;
 $a.b=$ g.c.d of a and b ;
and $a'=\frac{n}{a}$.

For what values of n, (B, +, .,') is a Boolean algebra. Find the zero element and the unit element.

- (b) Let Y be a non-empty subset of a finite set X. Show that the power sets P(X) and P(Y) are Boolean algebras but P(Y) is not a Boolean subalgebra of P(X).
- 2. In a Boolean algebra (B, +, ., '), prove that for all $a, b, c \in B$,

(a)
$$a+b=a+c$$
 and $a.b=a.c \Rightarrow b=c$,

(b)
$$a.b.c + a.b.c' + a.b'.c + a'.b.c = a.b + b.c + c.a.$$

3. Define Boolean function of n variables. Find the function f of three variables x, y, z such that

f(x, y, z) = 0 if two of the variables are 1 and the other is 0, = 1 otherwise.

Express the expression in disjunctive normal form.

- 4. Minimize the function f(x, y, z, t) = x'yz + x'z't' + xy't' + xyt + yz't using Karnaugh map. [5]
- 5. Convert the following numbers as directed.

(a)
$$(1729)_{10} = ()_8$$
, (b) $(100110)_2 = ()_{10}$, (c) $(203)_{16} = ()_3$.

 $[1\frac{1}{2}+1\frac{1}{2}+2]$

[2]

[3]

[2]

[3]

[1+4]

[2+3]

- 6. Add and subtract the numbers $(1010010)_2$ and $(11011)_2$.
- 7. Draw the circuit which realises the Boolean expression xyz + xy'z + xy'z' and simplify the circuit if possible
- circuit, if possible. [5]
- 8. (a) Find the output sequence Y for an AND gate with inputs A, B, C A = 10111001; B = 10101010; C = 01101100. [1]
 - (b) Find the output sequence Y for an OR gate with inputs A, B, C A = 11001010; B = 01100110; C = 00101000. [1]
 - (c) Draw the circuit which realises the Boolean expression AB' + (A + BC)' + (A'B + C') using 'OR-AND' gates. [3]