M. Sc. Examination-2022

Semester-I Mathematics Paper: MMC-11 (Real Analysis)

Time: 3 Hours

Full Marks: 40

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any four questions.

- 1. (a) Define the outer measure $m^*(A)$ of a set $A \subseteq \mathbb{R}$. Prove that m^* is finitely subadditive.
 - (b) If A_1, A_2, \ldots are measurable subsets of \mathbb{R} , examine if $\bigcup_{n=1}^{\infty} A_n$ is measurable. [(2+4)+4]
- 2. (a) Describe Lebesgue measure m(E) of a set $E \subseteq \mathbb{R}$. Let A_1, A_2, \ldots be measurable subsets of \mathbb{R} having finite measures such that $A_1 \supseteq A_2 \supseteq \ldots$ Show that $m\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} m(A_n)$.
 - (b) Let $A \subseteq \mathbb{R}$ be a measurable set and f be an extended real valued measurable function on A and f = g a.e. on A. Prove that g is measurable on A. [(1+5)+4]
- 3. (a) Let $\{f_n\}$ be a sequence of measurable functions such that $f_n \longrightarrow f$ pointwise a.e. on a set $A \subseteq \mathbb{R}$. Check if f is measurable on A.
 - (b) If $f: E \longrightarrow \mathbb{R}$ is measurable on $E \subseteq \mathbb{R}$, then show that for each $\delta > 0$, there exist a continuous function g on \mathbb{R} and a closed set $F \subset E$ such that f = g on F and $m(E \setminus F) < \delta$. [5+5]
- (a) For each $n \in \mathbb{N}$, let $f_n : A \longrightarrow \mathbb{R}$ be a bounded measurable function on A, where $m(A) < \infty$. If $f_n \longrightarrow f$ uniformly on A, show that $\int_A f_n \longrightarrow \int_A f$. Does the result hold good if $f_n \longrightarrow f$ pointwise only on A? Justify your answer.

 (b) Establish Chebychev's inequality.

 [(4+2)+4]
- (a) Let $\{f_n\}$ be a sequence of non-negative measurable functions on a set $E \subseteq \mathbb{R}$ such that $f_n \longrightarrow f$ pointwise a.e. on E. Show that $\int_E f \le \liminf_{n \to \infty} \int_E f_n$. Further, if $\{f_n\}$ is monotone increasing, prove that $\int_E f = \lim_{n \to \infty} \int_E f_n$.

 (b) Let f be an extended real valued function on \mathbb{R} such that $f = \infty$ on \mathbb{Q} . Determine the value of $\int_{\mathbb{Q}} f$.
- 6. (a) Let m(E) < ∞ and {f_n} be a sequence of measurable functions on E such that f_n → f pointwise a.e. on E and f is finite a.e. on E. Examine if f_n → f in measure on E.
 (b) Establish the linearity and monotonicity of integration for non-negative measurable functions over a measurable subset of R.

M.Sc. Examination 2022 Semester-I Mathematics Paper: MMC 12 (Complex Analysis)

Time: 3 Hours

Full Marks: 40

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any four questions.

Λ.	(a)	Let $f(z)$ be a continuous function in a simply connected domain D and z_0 be any arbitrary but fixed point in D . If $F(z) = \int_{z_0}^{z} f(w)dw$, where the integral is independent of the path so long as the path lies in D , then show that $F'(z) = f(z)$ for every z in D .	[3]
	(15)	State and prove the maximum modulus theorem.	[5]
	(c)	Using maximum modulus theorem show that $f(z) = z^{10} + z^5 - 7$ has at least one zero in $ z < 2$.	[2]
√2.		Using Taylor's theorem expand $f(z) = \frac{1}{z-1}$ in powers of $(z+1)$. State and prove Laurent's theorem.	[2] [5]
	' '	Expand $f(z) = \frac{1}{(z+2)(z-3)}$ in Laurent series in the region $2 < z < 3$.	[3]
3/.	(a)	Show that if $f(z) = (z - \beta)^m \phi(z)$, where $\phi(z)$ is analytic at β and $\phi(\beta) \neq 0$ then β is a zero of $f(z)$ of order m and conversely.	[4]
	(b)	State and prove Riemann's theorem on removable singularity.	[3]
	(c)	If $f(z)$ has a pole at α of order m then show that $ f(z) \to \infty$ as $z \to \alpha$ in any manner.	[3]
4		Determine the nature of the singularities of $\sec \frac{1}{z}$.	[3]
	(b)	Prove that the zeros of a non-constant analytic function are isolated points.	[2]
	(c)	State and prove Cauchy's residue theorem. Using this theorem evaluate $\oint_{ z =1} \frac{c^z}{2z-1} dz$.	[3+2]
5.	(a)	State and prove Rouche's theorem(Principle of Argument may be assumed).	[3]
	. ,	or at a state of the state of t	[3]
		State and prove open mapping theorem.	[4]
6.	(a)	Prove that a function which is analytic every where including the point at infinity is a constant.	[3]
	(b)	Find $Res[f(z), \infty]$, where $f(z) = \frac{1}{z^2 - 1}$.	[2]
	. ,	(i) $\int_0^\infty \frac{\cos x dx}{x^2 + a^2}$, $a < 0$; (ii) $\int_0^{2\pi} \frac{d\theta}{(a + b\cos\theta)^2}$, $a > b > 0$.	[5]

M. Sc. Examination-2022 Semester-I Mathematics MMC-13(Linear Algebra)

Time: Three Hours

Full Marks: 40

Questions are of values as indicated in the margin. (V is a finite dimensional vector space over F.)

Answer any four questions.

√ſ.	(a)	Show that similar matrices have the same eigen values. Let λ be an eigen value of two similar matrices	[2+2]
	(b)	A and B. Show that dim $E_{\lambda}(A) = \dim E_{\lambda}(B)$ Let $A, B \in M_n(F)$. Show that $\chi_{AB}(t) = \chi_{BA}(t)$. Give examples of two matrices A and B such that AB and BA are not similar.	[3+1]
	(c)	Show that 0 is an eigen value of the matrix $\begin{pmatrix} 1 & -2 & 3 \\ 0 & 3 & 4 \\ 2 & -1 & 10 \end{pmatrix}$ and the geometric multiplicity of 0 is 1,	
		without solving the characteristic polynomial and finding the eigen space 20.	[2]
√2.		Let $w \in \mathbb{R}^n$ be such that $ w = 1$. Find the eigen values and eigen vectors of the Householder matrix	[4]
		Let $T: V \longrightarrow V$ be a linear transformation, $\alpha \in V$ and $W = \langle \alpha \rangle_T$. If k is the largest positive integer $X = \{x \in X \mid (\alpha)\}$ is linearly independent, then show that $\dim W = k$.	[3]
		Let $T:V\longrightarrow V$ be a linear transformation and W be a T-invariant subspace of V. Show that the characteristic polynomial of T_W divides that of T.	[3]
∑ 8.		Let $m(t)$ be the minimal polynomial of the linear operator $T:V\longrightarrow V$. Show that $\lambda\in F$ is an eigenvalue of T if and only if $m(\lambda)=0$.	[2]
		Let $T:V\longrightarrow V$ be a linear transformation, $m(t)$ be the minimal polynomial of T and $\deg m(t)=k$.	[3]
		Let $T:V\longrightarrow V$ be a linear transformation, and U and W be two T -invariant subspaces of V such that $V=U\oplus W$. Show that the minimal polynomial of T is the least common multiple of the minimal polynomials of T_U and T_W .	[3] [2]
	(d)	Show that every reflection is diagonalizable.	
A.		$A \in \mathcal{M}(F)$ Show that A is diagonalizable if and only if F^n has a basis of eigen vectors of A.	[3]
	(b)	Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$. Find a nonsingular matrix P such that $P^{-1}AP$ is a diagonal matrix.	[3]
	(c)	Let $T: V \longrightarrow V$ be a linear transformation and $f(t) \in F[t]$. If $f(t) = g(t)h(t)$ in $F[t]$ such that $f(t) = f(t)h(t) = 1$, then show that $\ker f(T) = \ker g(T) \oplus \ker h(T)$.	[4]
5.	(a)	Show that two projections are similar if and only if they are of same rank. Does this result hold for	[2+1]
	(b)	reflections? Let $T: V \longrightarrow V$ be a linear operator and $\beta = \{v_1, v_2, \dots, v_n\}$ be a basis of V . Prove that $[T]_{\beta}$ is upper Let $T: V \longrightarrow V$ be a linear operator and $\beta = \{v_1, v_2, \dots, v_n\}$ is T -invariant for all $1 \le k \le n$. triangular if and only if $span(\{v_1, v_2, \dots, v_k\})$ is T -invariant for all $1 \le k \le n$.	[4]
		les of two diagonalizable linear operators S and I such that S 7 I is diagonalizable	[3]
6.	(a)	Let $T: V \longrightarrow V$ be a linear operator and $\chi(t) = (t - \lambda_1)^{k_1} (t - \lambda_2)^{k_2} \cdots (t - \lambda_k)^{k_k}$. Let $T: V \longrightarrow V$ be a linear operator and $\chi(t) = (t - \lambda_1)^{k_1} (t - \lambda_2)^{k_2} \cdots (t - \lambda_k)^{k_k}$.	[3]
Ü.	(b)	eigen spaces G_{λ_i} of I . Show that M is a space of I in I of I be an I in I matrix in Jordan canonical form. Show that the number of Jordan blocks in I of I to	[3]
	(c)	order k is $2n(A^n) - n(A^n)$	[4]
	(-)	Let $N = J_3(0) \oplus J_2(0) \oplus J_2(0) \oplus J_1(0)$. Find the intex of impostate, and characteristic and rank of N . Also find the geometric multiplicity of the eigen value 0.	

13

-1

Use separate answer script for each unit

M.Sc. Examination-2023

Semester-I Mathematics MMC-14 rdinary Differential Equation

		(Ordinary Differential Equations)	
Tir	ne: [Three Hours Full Marks: 40	
		Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.	
		Answer any four questions.	
√ 1.	(a)	Define a Sturm-Liouville Problem. Under what conditions a Sturm-Liouville problem is called a Regular or a Singular?	[1+1]
	(b)	Find the eigen values and orthonormal eigen functions of the Sturm-Liouville problem $\frac{d^2y}{dx^2} + \lambda y = 0$, $y(0) = 0, y(\pi) = 0$.	[1]
	(c)	Draw the phase diagram for the linear harmonic undamped oscillators represented by $\ddot{x} + \omega^2 x = 0$	1
X	(a)	Solve the given system by constructing Green's function, $\frac{d^2y}{dx^2} - y = -1.0 < x < 1.y(0) = 0.$ and $y(1) = 0.$	
		Convert the given IVP $y'' - y'sin(x) + e^x y = x$ into an integral equation with the initial conditions $y(0) = 1, y'(0) = -1$	[2]
	(c)	Under what condition the system $x' = -2tx^2$, on \mathbb{R} has Global or Maximal solution.	[2]
		State Peano's Theorem for the existence of first order IVP. Is the condition necessary? Justify your answer with a suitable example.	[2]
¥.	(a)	State Picard's Theorem and Lipchitz condition for first order IVP. Which one is stronger? Justify your answer with a suitable example.	[2]
		If S is defined by the rectangle $ x \le a$, $ y \le b$, show that the function $f(x,y) = x\sin(y) + y\cos(x)$, satisfies the Lipschitz condition and find the Lipschitz constant.	[3+1]
	(c)	Show that $e^{At} = \Phi(t)\Phi^{-1}(0)$, where e^{At} is the Matrix Exponential Function of the system $\dot{\mathbf{x}} = A\mathbf{x}$ and Φ is the Fundamental Matrix of the system.	1
4.	. (a)	Let f be a solution of $\frac{d}{dt} \left[P(t) \frac{dx}{dt} \right] + Q(t)x = 0$, having first derivative f' on $a \le t \le b$. Suppose f has an infinite number of zeros on $a \le t \le b$. Then show that $f(t) = 0$ for all t on $a \le t \le b$.	(~J
	(b)	Apply Picard's Method to solve the following initial value problem upto third approximation of the	
	(c)	solution, $\frac{dy}{dx} = 2y - 2x^2 - 3$ given that $y = 2$ when $x = 0$. Find the General solution of the following linear homogeneous system using eigen value-eigen vector method.	4
		$\dot{x} = 6x - 3y.$	
	. , ,	$\dot{y} = 2x + y$.	{- L }
√ 5		What is a Wronskians? State Abel's Theorem. Hence show that the Wronskians is either zero everywhere or zero nowhere.	[1+1+2]
	(b)	Obtain the adjoint equation of the following differential equation. $(1+x^2)\frac{d^2u}{dx^2} + x\frac{du}{dx} - 4u = 0$. Find the nature and stability of the fixed points of $\dot{x} = -ax + y$	[3]
		$\dot{y} = -x - ay$, for different values of the parameter a .	[3]
6	j. (a	Does $\Phi(t) = \begin{bmatrix} e^{2t} & e^{4t} \\ -e^{2t} & e^{4t} \end{bmatrix}$ is a Fundamental Matrix for the system $\dot{\mathbf{x}} = A\mathbf{x}$? If so, then find the matrix	
		A. Also find the solution of the system.	[3]
	(b) Find the Natural Fundamental set of solutions of the following Differential Equation: $(1+t^2)y'' = 2ty' + 2y = 0$, with the initial time 1.	191

(c) Consider a second-order homogeneous linear differential equation and write its adjoint equation. When a differential equation is called self-adjoint? Find a necessary and sufficient condition that a second-order linear differential equation $a_0(t)\frac{d^2x}{dt^2} + a_1(t)\frac{dx}{dt} + a_2(t)x = 0$ will be self-adjoint.

2ty' + 2y = 0, with the initial time 1.

Full Marks: 40

M. Sc. Examination-2022 Semester-I Mathematics Paper: MMC 15

Paper: MMC 15 (Partial Differential Equations)

Time: 3 Hours

Questions are of values as indicated in the margin. Notation and symbol have their usual meanings.

Answer any four questions.

- (a) If u(x,y) is the solution of the Cauchy problem $yu_x + xu_y = 0$, $u(0,y) = e^{-y^2}$, then find the value of u(1,2). State the region of xy-plane in which the solution can be determined uniquely.
 - (b) Solve the following PDE by Monge's method:

$$2x u_{xx} - (x + 2y) u_{xy} + y u_{yy} = \frac{x + 2y}{x - 2y} (2u_x - u_y).$$

- (c) Find the nature of the PDE $\frac{1}{4}u_{xx} + \sqrt{2022} u_{xy} + \{2022 sgn(y)\}u_{yy} = 0$, for y > 0 and y < 0. [(2+1)+5+2]
- 2. (a) Show that a linear PDE of the type $\sum_{r,s} C_{rs} x^r y^s \frac{\partial^{r+s} u}{\partial x^r \partial y^s} = f(x,y)$ may be reduced to one with constant coefficients by the substitutions $\xi = \ln x$, $\eta = \ln y$. Hence, find the complete integral of the PDE

$$x^{2}u_{xx} - xyu_{xy} - 2y^{2}u_{yy} + xu_{x} - 2yu_{y} = \ln\frac{y}{x} - \frac{1}{2023}.$$

- (b) Find a surface satisfying $u_{xx} 2u_{xy} + u_{yy} = 6$ and touching the hyperbolic paraboloid u = xy along its section by the plane x = y. [(2+4)+4]
- 3. (a) Using Cauchy's method of characteristics, find an integral surface of the PDE

$$u_y + uu_x = -x, \ y \ge 0$$
$$u(x, 0) = f(x), \ -\infty < x < \infty.$$

(b) Convert the following PDE to the canonical form, and hence solve it:

$$x^{2}(y-1)$$
 $u_{xx} - x(y^{2}-1)$ $u_{xy} + y(y-1)$ $u_{yy} + xy$ $u_{x} - u_{y} = 0$.

[5+5]

A. (a) Solve the following homogeneous wave equation by the method of Laplace transform:

$$9 u_{tt} = u_{xx}$$

- $u(0,t)=f(t), \lim_{x\to\infty}u(x,t)=0, \ x,t\geq 0$ where u is the deflection of a string, released from rest on the x-axis $[u(x,0)=0=u_t(x,0)].$
- (b) Use the complex form of the Fourier transformation to show that $u = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\xi) e^{-\frac{(\pi-\xi)^2}{4t}} d\xi$ is the solution of the PDE

$$u_t = u_{xx}, -\infty < x < \infty, t > 0$$

with u = f(x) when t = 0 and u(x, t) is bounded.

[5+5]

- 5. (a) State maximum-minimum principle for a function u(x,y) which is continuous in a closed region $\overline{\mathbb{R}}$ (= $\mathbb{R}\cup\partial\mathbb{R}$) and satisfies the Laplace equation $\nabla^2 u=0$ in the interior of \mathbb{R} .
 - (b) Let $\Omega = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ be the open unit disc in \mathbb{R}^2 with boundary $\partial\Omega$. If u(x,y) is the solution of the Dirichlet problem $u_{xx} + u_{yy} = 0$ in Ω and $u(x,y) = 2x^2 1$ on $\partial\Omega$. Find the value of $u(\frac{1}{2},\frac{1}{2})$.
 - (c) By using the method of separation of variables, obtain the solution of the following initial boundary value problem (IBVP) for the wave equation:

$$u_{tt} = u_{xx}, \ x \in (0, \pi), t > 0,$$

BC's:
$$u(0,t) = u(\pi,t) = 0, \ t > 0,$$

IC's: $u(x,0) = \sin x - \sin 2x, \ u_t(x,0) = 0, \ 0 \le x \le \pi.$ [2+3+5]

 $\sqrt{6}$. (a) If ϕ is a harmonic function in \mathbb{R} and $\frac{\partial \phi}{\partial n} = 0$ on $\partial \mathbb{R}$, then ϕ is a constant in $\overline{\mathbb{R}}$ (= $\mathbb{R} \cup \partial \mathbb{R}$) - prove it.

(b) Solve the following exterior Dirichlet problem for a circle:

PDE: $\nabla^2 u = 0$, r > a, $0 \le \theta < 2\pi$

BC: $u(a, \theta) = f(\theta), \ 0 \le \theta < 2\pi$

where $f(\theta)$ is a continuous function on $\partial \mathbb{R}$ and $u(r,\theta)$ must be bounded as $r \to \infty$. Hence deduce Poisson's integral formula of the form $u(r,\theta) = \frac{1}{2\pi} \int_{\phi=0}^{2\pi} \frac{(r^2-a^2)f(\phi)}{r^2-2racos(\phi-\theta)+a^2} d\phi$.

$$u(r,\theta) = \frac{1}{2\pi} \int_{\phi=0}^{2\pi} \frac{(r^2 - a^2)f(\phi)}{r^2 - 2racos(\phi - \theta) + a^2} d\phi.$$

[3+(5+2)]

[2]

[2]

M. Sc. Examination-2022

Semester-I

Mathematics
Paper: MMC-16

(Integral Transforms and Integral Equations)

Time: Three Hours

Full Marks: 40

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer Question No. 1 and any three from the rest.

- 1. Answer any five questions from the following: $(a) \text{ Find the inverse Laplace transform of } F(s), \text{ where } F(s) = \frac{1}{s^2 + 5s + 4} + \frac{e^{-\pi s}}{s^2 1}.$ [2] $(b) \text{ Find the inverse Fourier transform of } F(s), \text{ where } F(s) = \frac{1}{3 + 4is s^2}.$
 - (c) Find the value of λ for which the integral equation $u(x) = e^{2x} + 3\lambda \int_0^1 e^{2x} e^{2t} u(t) dt$ has infinitely many solutions.
 - (d) Solve the Fredholm integro-differential equation $u'(x) = 9x^2 + \int_0^1 u(t)dt, \ u(0) = 1.$ [2]
 - Find the Laplace transform of f(t), where $f(t) = \sin t$ when $0 < t < \pi$ and $f(t) = \cos t$ when $t > \pi$.
 - (f) Using modified Adomian decomposition method, solve the integral equation $y(x) = 2x + 1 + \sin x + x^2 \cos x \int_0^x y(t)dt.$ [2]
 - Find the value of u(1) + u(3), where u(x) satisfies the equation $1 + x e^x = \int_0^x (t x)u(t)dt.$ [2]
- 2. (a) Find the resolvent kernel of the integral equation $y(x) = e^x \sin x + \int_0^x \frac{2 + \cos x}{2 + \cos t} y(t) dt.$ [3]
 - (b) Find the Fourier sine transform of f(x), where $f(x) = \cos 9x$ when $0 \le x \le 5$, and f(x) = 0 when x > 5.
 - (c) Solve Volterra integral equation of first kind $\frac{x^2}{2} = \int_0^x (1 x^2 + t^2) y(t) dt.$ [2.5]
 - (d) Convert the integral equation $y(x) = \sin x \frac{1}{2} \int_{0}^{x} (x-t)^{2} y(t) dt$ to an equivalent differential equation. [2.5]
- (a) State Fredholm alternative. Find the conditions for which the integral equation $y(x) = f(x) + \lambda \int_{0}^{\pi} \cos(x+t)y(t)dt$ has infinitely many solutions. [1+4]
 - (b) Using Laplace transform, solve the differential equation $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = h(t); y(0) = 0, y'(0) = 0, \text{ where } h(t) = 1, 0 < t < \pi, \text{ and } h(t) = 0, t > \pi.$ [5]

(c) Using Hilbert-Schmidt theorem, solve the integral equation
$$y(x) = x^2 + x + 1 + \frac{3}{2} \int_{-1}^{1} (xt + x^2t^2)y(t)dt$$
. [5]

Solve the Volterra integral equation $y(x) = x^2 + \int_0^x (x-t)y(t)dt$ by

•

(a) Using Fourier transform solve the differential equation
$$\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 5y = \delta(t)$$
. [3]

(b) Find the Fourier transform of
$$f(x)$$
, where $f(x) = 1 - x^2$, $-1 < x < 1$, and $f(x) = 0$, otherwise.

Hence using Persaval's identity, evaluate $\int_{0}^{\infty} \left(\frac{\sin x - x \cos x}{x^3}\right)^2 dx$. [3+2]

(c) Find the Laplace transform of the function
$$f(t) = t^{5/2} + \sin t \cos t + t \sin h 5t + e^{-5t} \cos 3t$$
. [2]