separate answer script for each unit

B. Sc. (Honours) Examination-2023

Semester-VI (CBCS) Mathematics Course: CCMA-13 (Analysis-VI)

Full Marks: 60

Time: 3 Hours

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Unit-I (Full Marks: 30)

(Complex Analysis)

Answer any three questions.

1.	(a)	If $f: \mathbb{C} \longrightarrow \mathbb{C}$ is a function such that $\lim_{z \to z_0} f(z) = \overline{w}$, where $w \in \mathbb{C}$, then show that $\lim_{z \to z_0} \overline{f(z)} = w$.	[3]
	(b)	If a continuous function $f: D \longrightarrow \mathbb{C}$, defined on a domain D , takes only the real integral values, size that f is constant.	[4] [3]
	(c)	Derive Cauchy-Riemann equations in complex form.	[0]
2.	(a)	Examine if $u(x,y) = y + e^x \cos y$ is a harmonic function in \mathbb{C} . If possible, find its harmonic conjugate and then construct an analytic function with $u(x,y)$ as its real part.	[4]
	(b)	Discuss the convergence of the series $\sum_{i=1}^{\infty} n(1+i)(2i)^{-n}$.	[3]
	(c)	Let $f: \mathbb{C} \longrightarrow L$ be analytic, where L is the line $x + 2y = 1$. Prove or disprove: f is bounded in \mathbb{C} .	[3]
3.		Find all the Möbius transformations of the unit disc $ z \leq 1$ onto the right half-plane $Re(w) \geq 0$.	[5]
	(b)	Evaluate $\int_{\Gamma} (\overline{z}dz + zd\overline{z})$ along the curve Γ defined by $z^2 - 2z\overline{z} + (\overline{z})^2 = (1+i)z + (1-i)\overline{z}$ from the	
	(-)	point $z = -1 + i$ to the point $z = -6 + 2i$.	[5]
4.	(2)	State and prove Cauchy's integral formula.	[4]
-1,		Describe the orientation principle related to Möbius transformations. Hence find the image of the exterior of the circle $ z+2 =2$ under the map $w(z)=\frac{z}{2z+8}$.	[1+3]
	(c)	of the same of the	[1+1]
5.	(a)	Using the techniques of Complex Analysis, establish the fundamental theorem of Algebra.	[4]
	(b)	If f is an entire function satisfying $f(z) = f(z + z_1) = f(z + z_2)$, $\forall z \in \mathbb{C}$, where z_1 and z_2 are two non-zero complex numbers such that $\frac{z_1}{z_2} \notin \mathbb{R}$, show that f is constant.	[4]
	(c)	Evaluate $\int_{\Gamma} \overline{z} dz$, where Γ is the right-half of the circle $ z = 1$ from $z = -i$ to $z = i$.	[2]

Unit-II (Full Marks: 30)

(Metric Spaces)

Answer any three questions.

6	(2)	Define a metric space. Give an example of it with proper justifications.	[2+1+2
U.	(a)	Define a metric space. Give an example of it with proper justifications.	[2+1+2
	(b)	Let X be a non empty set and ρ be a real valued function of ordered pairs of elements of X which satisfies the following two conditions:	
		$\rho(x,y)=0$ if and only if $x=y$ and $\rho(x,y)\leq \rho(x,z)+\rho(y,z)$. Show that $\rho(x,y)$ is a metric on X .	[3
	(c)	Let R be the set of all real numbers and for x, y in R, let $\rho(x, y) = x^4 - y^4 $. Show that (X, ρ) is not a metric space.	[2

7.		Define a convergent sequence in a metric space (X, ρ) . Show that in a metric space (X, ρ) , if $x_n \to x_0$ and $y_n \to y_0$ as $n \to \infty$ then $\rho(x_n, y_n) \to \rho(x_0, y_0)$.	[1+2]
	(b)	Show that necessary and sufficient condition that a sequence $\{x_n\}$ of points of X converges to $x \in X$ is that every neighbourhood $S(x,a)$ of x contains all the points of the sequence except perhaps a finitely many.	[2+2
	(c)	Is the arbitrary intersection of open sets open in a metric space? Answer with reason.	[1+2]
8.	(a)	Define the closure \bar{A} of a set $A \subset X$ in a metric space (X, ρ) . Prove that a point $p \in \bar{A}$ if and only if $S \cap A \neq \emptyset$ for every neighbourhood S of p .	[1+2+2]
	(b)	If A, B are subsets of X in a metric space (X, ρ) , then show that (i) $A \subset \bar{A}$, (ii) $A \subset B$ implies $\bar{A} \subset \bar{B}$, (iii) $A \cup \bar{B} = \bar{A} \cup \bar{B}$.	[1+2+2]
9.	(a)	Give an example with proper justification of a Cauchy sequence in a metric space.	[2]
		Prove that a Cauchy sequence, which has a convergent subsequence is itself convergent.	[3]
	(c)	Define a complete metric space. Prove that $C[a, b]$ is a complete metric space.	[1+4]
10.		Let X be a metric space and Y be a subset of X. Then prove that Y, considered as a metric space is closed, if it is complete. State and prove Banach's contraction mapping principle.	[1+3]
	(-)		[6]

B. Sc. (Hons) Examination-2023 Semester-VI Mathematics CCMA 14 (Algebra IV)

Time: Three Hours

Full Marks: 60

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Group - A (Group Theory) Answer *any four* questions.

1.	 (a) Let G = { \$\begin{pmatrix} 1 & r \ 0 & 1 \end{pmatrix} r ∈ \mathbb{R}\$}. Show that the group G is isomorphic to \mathbb{R}. Are the groups \mathbb{R}* and \mathbb{F} isomorphic? (b) Consider the group homomorphism f: \mathbb{C}* → \mathbb{C}* defined by f(z) = z^{100}. Find the kernel and image of f. 	[2+1]
2.	(a) Let $f: G \longrightarrow G'$ be a homomorphism and H be a subgroup of G . Show that $f^{-1}(f(H)) = H \ker f$. (b) Prove that the group $\mathbb{Q}/\mathbb{Z} \simeq G$ where $G = \bigcup_{n \in \mathbb{N}} C_n$ is the group of all roots of unity.	
3.	 (a) State and prove the second isomorphism theorem for groups. (b) Define a suitable homomorphism f: GL₂(ℝ) → ℝ* to show that the order of the group GL₂(ℝ)/is two where N = {A ∈ GL₂(ℝ) det A > 0}. 	[3] 'N [2]
4.	 (a) Find all homomorphisms from Z onto Z₉. (b) Is Z a homomorphic image of R? Justify. 	[2] [3]
5.	(a) Show that $GL_2(\mathbb{R})$ is not isomorphic to \mathbb{R}^* . (b) Show that an infinite group G is cyclic if and only if it is isomorphic to each of its nontrivial subgroup	[2] ps. [3]
6.	(a) Find $Aut(K_4)$. (b) Prove that $Aut(\mathbb{Z}_n) \simeq U_n$.	[2] [3]
	Group - B (Ring Theory) Answer any four questions.	
1.	 (a) State and prove the correspondence theorem for rings. (b) Let R be a ring with 1. If the characteristic of R is a prime p, then show that R has a subri isomorphic to Z_p. 	[3] ng [2]
2.	 (a) Find all ring homomorphisms f: Z → Z. (b) Let X be a nonempty set and R = Map(X, Z₂) be the ring of all mappings from X into Z₂. For every a ∈ X define C_a: X → Z₂ by C_a(x) =	[2]
	Show that as rings $\mathcal{P}(X) \simeq R$.	[3]
3.	(a) Show that no two subrings of Z are isomorphic.(b) Let R be a ring homomorphic image of Z. Show that R is a commutative ring with unity and evolded of R is principal.	[2] ery [3]
4.	 (a) Use correspondence theorem to find the number of ideals of Z₁₀₀. (b) Let R be a commutative ring with 1, and I and J be two ideals of R such that R = I + J. Show the IJ = I ∩ J and R/IJ ≃ R/I × R/J. 	[1]

[2]

[3]

[3]

[2]

[2]

[3]

[3]

[2]

[3]

[2]

[3]

[2]

[2]

[3]

[3] [2]

- 5. (a) Find all maximal ideals of \mathbb{Z}_{100} .
 - (b) Let R be a commutative ring with 1 and M be an ideal of R. Show that M is maximal if and only if R/M is a field.
- 6. (a) Show that the ideal $\langle x \rangle$ in $\mathbb{Z}[x]$ is a prime ideal. Is $\langle x \rangle$ a maximal ideal?
 - (b) Show that every prime ideal in a Boolean ring with 1 is maximal.

Group - C (Linear Algebra) Answer any four questions.

- 1. (a) A linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ is defined by T(x,y,z) = (x-y+2z,x+2y-z,2x+y+z). Find the rank and nullity of T.
 - (b) Is there any linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that $\ker T = \{(x, y, z) \in \mathbb{R}^3 \mid 2x = y = 3z\}$ and $Im T = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}?$
- 2. (a) Let A be an $m \times n$ real matrix. Define $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ by T(X) = AX. Show that T is one-to-one if and only if r(A) = n. Then show that ST = TS for every $S \in \mathcal{L}(V)$ if and only if $T = cI_V$ for some
 - (b) A linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is given by T(x,y) = (2x-3y,x+4y). Find the image of the line x + 2y = 1 under T.
- 3. (a) Let V and W be two finite dimensional vector spaces and U is a subspace of V. Prove that there is a linear transformation $T:V\longrightarrow W$ with $\ker T=U$ if and only if $\dim U\geqslant \dim V-\dim W$.
 - (b) Let $T:V\longrightarrow W$ be a linear transformation. Show that V has a subspace U such that $V=\ker T\oplus U$ and ImT = T(U).
- 4. (a) State and prove the rank-nullity theorem.
 - (b) Let $D, I: P(R) \longrightarrow P(R)$ be the differential and integral operators. Show that $\{D, I\}$ are linearly independent.
- 5. (a) Let $T: V \longrightarrow V$ be a linear operator such that $T^2 = cT$ for some $c \in F$. Prove that $V = ImT \oplus \ker T$.
 - (b) Let $S,T:U\longrightarrow V$ be two linear transformations. Then show that $|\mathrm{rank}(S)-\mathrm{rank}(T)|\leqslant \mathrm{rank}(S+T)\leqslant \mathrm{rank}(S+T)$ rank(S) + rank(T).
- 6. (a) Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}$ be the matrix of a linear transformation $T: \mathbb{R}^3 \longrightarrow P_2(\mathbb{R})$ in the basis
 - $\beta = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ and $\gamma = \{1 + t, t + t^2, 1 + t^2\}$. Find T. (b) Show that the rank of a linear transformation is same as the rank of each of its matrix representations.

B.Sc. (Honours) Examination, 2023

Semester-VI (CBCS)

Mathematics

Course: DSEMA-3A

(Computer Fundamentals)

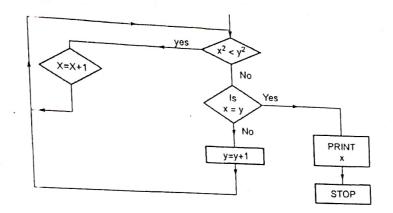
Time: Two Hours

Full Marks: 20

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any four questions.

1.	(a)	Write two differences between compiler and assembler.	[2]
	(b)	A Fibonnaci sequence is defined as follows: $0, 1, 1, 2, 3, 5, \cdots$ $(F_{n+1} = F_n + F_{n-1}, n \ge 1)$. Using standard symbols, draw a flowchart to find all the numbers of this sequence which are ≤ 2023 .	[3]
2.	(a)	Why are the following unacceptable as FORTRAN 77 real constants? (i) $5E - 7$ (ii) $E + 8$ (iii) $8,987.43$ (iv) $7.6E2.8$	[2]
	(b)	Write a FORMAT statement to print an integer value -2023 .	[1]
	(c)	What do you mean by character expression? Explain with a suitable example.	[2]
3.	(a)	Assume that M and N are integer variables having the values -75 and 78 respectively, and that X , Y , Z are real variables with values -73.56 , 80.0 and 114.7 respectively. Find the value of the following expression. NOT. $((M .GT. N) .AND. (X .LT. Z)) .NEQV. ((M .LE. N) .OR. (X .GE. Z))$	[3]
	(b)	State two main differences between READ statement and DATA statement.	[2]
4.	(a)	The graph of the equation $x^2 + y^2 = 50$ is a circle with center at the origin and radius $\sqrt{50}$. Write a FORTRAN 77 program to determine the number of points with integer coordinates which lie in the circle.	[3]
	(b)	Write an arithmetic IF statement equivalent to: $GO\ TO(15,25,35),\ JACK$	[1]
	(c)	Point out the errors (if any) in the following: $DIMENSION\ M(50)$ $S=0.0$ $DO\ 15\ J=1,\ 3$ $15\ IF(M(J)\ .EQ.\ 0)\ S=S+J$	[1]
5.	(a)	Write the FORTRAN 77 program segment for the following flowchart using IF-THEN-ELSE statement.	[3]



(b) Rewrite the following FORTRAN 77 segment using a DO loop.

$$KOUNT = 0$$

$$I = I + 1$$

$$10 READ(*,5) A$$

$$IF(A.GT.0) KOUNT = KOUNT + 1$$

$$I = I + 1$$

6. (a) Find the output (mentioning all the necessary steps involved) of the following program: $INTEGER\ X(6)$

$$DO\ 10\ K = 1,\ 6,\ 2$$

$$X(K) = 3 * K$$

$$X(K+1) = K+2$$

$$DO\ 20\ J=1,\ 6,\ 3$$

$$X(J) = X(J) + X(J+1)$$

$$IF(X(2) .LT. 7) X(2) = X(3)$$

$$WRITE(6, 15)$$
 X

STOP

END

(b) Define a statement function to calculate $Z = \sqrt{a_1b_1 + a_2b_2}$ and write an assignment statement to calculate $A = \frac{\sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}}{\sqrt{x_1 y_1 + x_2 y_2}}$

$$\frac{-x_2^2\sqrt{y_1^2+y_2^2}}{(y_1+x_2y_2)}.$$
 [2]

[2]

[3]

B. Sc. (Honours) Examination-2023 Semester-VI (CBCS) Mathematics Paper: DSEMA-4 (Mathematical Modelling)

Time: Three Hours

Full Marks: 60

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Group A (Physical System)
(Full Marks: 30)
Answer any five questions.

- 1. How is a simple Pendulum mathematically modeled? Linearized it to convert into a 'simple harmonic motion (SHM)'. If a periodic force of the form $f_0 \cos \omega t$ is added to the SHM, explain the resonance. [2+1+3]
- 2. Derive the heat equation when there is no loss or gain of heat. Explain each parameter of the equation.

 Also, write the initial and boundary conditions of the equation.

 [3+2+1]
- 3. What is meant by a 'perturbation'? For a damped harmonic motion $\ddot{X} + \epsilon \dot{X} + \omega^2 X = 0$, where ϵ is the perturbation parameter, obtain the solution up to second order perturbation. [2+4]
- 4. (a) Write the difference between the Static model and the Dynamic model.
 - (b) Write the difference between the Explicit model and the Implicit model.
 - (c) Write the difference between the Discrete model and the Continuous model.
 - (d) Write the difference between the Deterministic model and the Stochastic model.

[1.5+1.5+1.5+1.5]

- 5. Explain Over damping, Under damping, and Critical damping for a damped harmonic oscillator. How do you solve a damp harmonic oscillation where the external force is of the form $f_0 \cos pt$. [1+1+1+3]
- 6. (a) What do you mean by the Physical and Mathematical Models?
 - (b) How do they differ from Real World Problems?

[3+3]

- 7. With a schematic diagram, design a 'LRC circuit'. Obtain the differential equation of the circuit. Solve the differential equation by explaining each parameter in the solution. [2+1+3]
- 8. Define a 'SHM'. Obtain the mathematical model of SHM. Convert the equation into a system of an ordinary differential equation Ax = 0. Find the eigenvalue of the matrix A and the nature of the fixed point. [1+2+1+2]

Group B (Biological System) (Full Marks: 30)

Answer question number 1 and any two from the rest.

- 1. Answer any two questions.
 - (a) Define an autonomous system and describe the different kinds of equilibrium points of the system of Consider the system

$$\frac{dx}{dt} = x(1 - x - y),$$

$$\frac{dy}{dt} = \beta(x - \alpha)y;$$

 α , β are positive constants. Show that the non-trivial equilibrium point $(\alpha, 1 - \alpha)$ is stable if $\alpha < 1$. (b) What do you mean by phase plane analysis in dynamical systems? Sketch the phase diagram for the following linear autonomous system and classify the equilibrium point:

$$\frac{dx}{dt} = x + 2y,$$

$$\frac{dy}{dt} = 5x + 4y.$$

- (c) In a two-dimensional (2D) autonomous system, it is well known that there can be no limit cycles in the model of mutualistic symbiosis populations Validate the statement via mathematical analysis. [2 \times 5=10]
- 2. Develop a single species age-independent population logistic model. Show that the population growth curve has a point of inflexion when half the final population size is attained. Show also that the point of inflexion occurs at $t = \frac{1}{a}log_e\left[\frac{\left(\frac{a}{b}\right)}{N_0} 1\right]$, where a and b are the intrinsic growth rate and intra-specific competition factor respectively and N_0 is the initial population size.
- 3. Write the limitations of the Lotka-Volterra predator-prey model. Carry out the stability analysis about the co-existence equilibrium point. Specify the solution trajectory of the model, taking into account the size of
 4. What do you mean by a reaction diffusion as a few points.
- 4. What do you mean by a reaction-diffusion system? Using Fick's law, develop a single-species reaction-diffusion model in one spatial dimension. Include some examples of both linear and non-linear reaction-diffusion models.