Use separate answer scripts for each unit

Undergraduate Examination-2024

Semester-I Mathematics Course: MJMA 01 (Algebra-I and Analysis I)

Time: Three Hours

answer.

Full Marks: 80

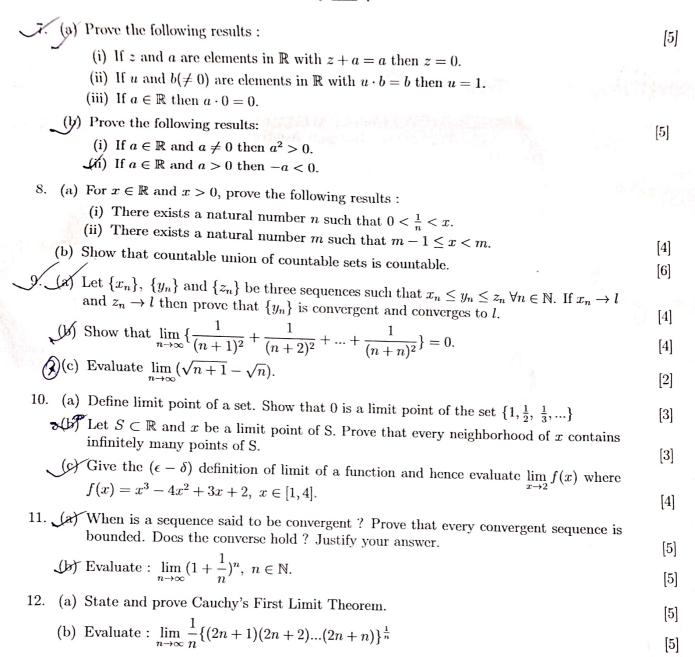
Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Unit-I: Algebra I (Marks: 40) Answer any four questions.

	rinswer <u>ang jour</u> questions.	
X. (8	Find the inverse of an element $\begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix}$ in $GL(2, \mathbb{Z}_{11})$. b) For any integer $n \geq 2$, show that there are at least two elements in U_n . c) Show that a group G is Abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for every $a, b \in G$.	· (~ [3] \
(1	b) For any integer $n \geq 2$, show that there are at least two elements in U_n .	[3]
(c) Show that a group G is Abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for every $a, b \in G$.	[2+2]
	a) Find a group that contains elements a and b such that $O(a) = O(b) = 2$ and $O(ab) = 2$.	[2]
(<u>l</u>	b) Let G be a group and $a \in G$ is an element of order n. If k divides n, show that $O(a^{\frac{n}{k}}) = k$.	[4]
(6	e) Suppose G is a group that has exactly eight elements of order 3. How many subgroups of order 3 are there in G ?	[4]
3. (a	Let a be the only element of order 2 in a group G. Then show that $a \in \mathbb{Z}(G)$.	[3]
(b) Show that the set $H=\{A\in GL(2,\mathbb{R}) \ \det A\ \text{is a power of }\ 2\}$ is a subgroup of $GL(2,\mathbb{R}).$	[3]
(c)) List all subgroups of D_4 .	[4]
4. (a)) Give an example of a non cyclic group, all of whose proper subgroups are cyclic. Justify your answer.	[3]
(b)	Prove that a group G of order n is cyclic if and only of there is an element of order n in G .	[2+2]
(c)	Suppose that a cyclic group G has exactly three subgroups: G itself, $\{e\}$, and a subgroup of order 7. Find the order of G .	[3]
5. (a)	Show that the number of all even permutations on a finite set is equal to the number of all odd permutations.	[4]
(b)	Find $\beta \in S_7$ be such that $\beta^4 = (2143567)$.	[3]
	How many odd permutations of order 4 are there in S_6 ?	[3]
6. (a)	Show that every element in A_n is either a 3-cycle or a product of 3-cycles.	[4]
(b)	Find a conjugate element of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 4 & 5 & 4 & 7 & 8 & 6 \end{pmatrix}$ in S_8	
		[3]
(c)	How many proper subgroups are there in a cyclic group of order 100? Justify your	[3]

Unit-II: Analysis I (Full Marks: 40)

Answer any four questions



Use separate answer script for each unit

Four Year Undergraduate Examination-2024

Semester-I Mathematics Course: MJMA 02

(Analytical Geometry and Vector Calculus)

Time: Three Hours

Full Marks: 80

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Unit I: Analytical Geometry (Full Marks: 40)

ome 1: Analytical Geometry (Full Marks: 40)	
Answer any four questions	
1. (a) If transformation from one set of rectengular axes to another with same origin expression $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ changes to $a'X^2 + 2h'XY + b'Y^2 + 2g'X + 2f'Y + c'$ then prove that (i) $a'b' - h'^2 = ab - h^2$ (ii) $a' + b' = a + b$.	the ² + [6]
(b) Find the polar equation of the straight line joining two points on the parabola $\frac{2a}{r} = 1 + Cos\theta$ with $\alpha - \beta$ and $\alpha + \beta$ as their vectorial angles.	[4]
2. (a) Reduce the equation $3x^2 + 2xy + 3y^2 - 16x + 20 = 0$ to its canonical form.	[6]
(b) Find the condition that the straight line $rCos(\theta - \alpha) = p$ touches the conic $\frac{l}{r} = 1 + eCos\theta$	[4]
3. (a) Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 7y - 2z + 2$ 0, $2x + 3y + 4z = 8$ is a great circle.	[4]
(b) A sphere of constant radius r passes through the origin O and cuts the axes in A,B,C. Prove that the locus of the foot of the perpendicular from O to the plan ABC is given by $(x^2 + y^2 + z^2)^2(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}) = 4r^2$.	in ne [6]
4. (a) Find the equation of the cone whose vertex is the origin and which passes throug the curve of intersection of the plane $lx + my + nz = p$ and the surface $ax^2 + by^2 - cz^2 = 1$.	h + [4]
(b) Find the condition that the plane $ax + by + cz = 0$ ($abc \neq 0$), cuts the con $yz + zx + xy = 0$ in perpendicular straight lines.	e [6]
5. (a) A variable plane through x-axis and a variable plane through y-axis are inclined at a constant angle α . Prove that their line of intersection generates the cone $z^2(x^2+y^2+z^2)=x^2y^2(tan\alpha)^2$.	i [5]
(b) Normals are drawn from the point (α, β, γ) to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$; prove that if the feet of the three normals lie on the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, then the feet of the remaining three will lie on the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} + 1 = 0$.	
6. (a) Prove that any two generators of the different systems of hyperboloid of one sheet intersect.	7 7
(b) Find the equations of the generators of the hyperboloid $x^2 + y^2 - 4z^2 = 9$ passing through the point $(-3, 4, 2)$.	[5]
	[0]

Unit-II: Vector Calculus (Full Marks: 40)

Answer any four questions

- 1. (a) Using vector method, prove that the straight lines joining the vertices of a tetrahedron to the centroids of the opposite faces are concurrent.
 - (b) Prove, using vector method, that the internal bisectors of the angles of a triangle are concurrent.
 - Let $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ be three vectors such that $\vec{\alpha}$ and $\vec{\gamma}$ are perpendicular to each other. Justify, with proof, whether the vectors $\vec{\alpha} \times (\vec{\beta} \times \vec{\gamma})$ and $(\vec{\alpha} \times \vec{\beta}) \times \vec{\gamma}$ are perpendicular to each other. [4+4+2]
- (a) Let \vec{a} and \vec{b} be two given vectors. Find vectors \vec{x} and \vec{y} such that $\vec{x} + \vec{y} = \vec{a}$, $\vec{x} \times \vec{y} = \vec{b}$ and $\vec{x} \cdot \vec{a} = 1$.
 - (b) Find the value of p such that the vectors $\hat{i}+3\hat{j}-2\hat{k}$, $2\hat{i}-\hat{j}+4\hat{k}$ and $3\hat{i}+2\hat{j}+p\hat{k}$ are coplanar.
 - (c) Prove that the straight lines $\vec{r_1} = \vec{a} + t(\vec{b} + \vec{c})$ and $\vec{r_2} = \vec{b} + s(\vec{c} + \vec{a})$ intersect.
 - (d) Prove that the straight lines $\vec{r}_1 = -3\vec{a} + 6\vec{b} + t(-4\vec{a} + 3\vec{b} + \vec{c})$ and $\vec{r}_2 = -2\vec{a} + 7\vec{c} + s(-4\vec{a} + \vec{b} + \vec{c})$ do not intersect. [3+3+2+2]
- 3. (a) State and prove the Frenet-Serret formulae.
 - (b) For the differentiable curve $\vec{R}(t) = e^t \cos t \ \hat{i} + e^t \sin t \ \hat{j} + e^t \ \hat{k}$, find the torsion τ .
 - (c) Using Frenet-Serret formulae, prove that $-\frac{d\vec{r}}{ds} \cdot \frac{d\vec{B}}{ds} = \kappa \tau$. [5+3+2]
- \mathcal{J} (a) Determine the value of λ so that the vector field $\vec{F}(x,y,z) = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+\lambda z)\vec{k}$ is solenoidal.
 - (b) Prove that the vector field $y \hat{i} + x \hat{j}$ is both irrotational and solenoidal.
 - (c) Determine whether the vector field $\sin y \ \hat{i} + \sin x \ \hat{j} + e^z \ \hat{k}$ is solenoidal or irrotational. [3+3+4]
- 5. (a) Define orientation-preserving and orientation-reversing parametrizations of a differentiable curve. Give an example in each case.
 - (b) Prove that the scalar line integral of a scalar function over a parametrized curve does not depend on the orientation of the curve.
 - (c) Prove that every vector line integral can also be expressed as a scalar line integral of some scalar function. [4+4+2]
- 6. (a) Verify using Green's theorem that the area of the rectangle $[0, a] \times [0, b]$ is ab.
 - (b) Using Green's theorem, determine the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - (c) Let $\vec{r}(t):[0,1]\to\mathbb{R}^3$ be a differentiable curve such that $\vec{r}(t)$ is an injective function on
 - (0, 1) and $\vec{r}(0) = \vec{r}(1)$. Prove that $\int_{\vec{r}} 3x^2 y dx + x^3 dy = 0$. [3+3+4]

Undergraduate Examination-2024

Semester-I Mathematics

Course: SECMA 01 (Algebra II and Analysis II)

Time: Three Hours

Full Marks: 60

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

UNIT - I : Algebra II (Marks : 40) Answer any four questions.

(a) Define reduced row echelon matrix. Reduce the augmented matrix of the system

$$2x + y - 3z = 5$$
$$x - 7z = 8$$
$$5x - 2y + 3z = 2$$

to its reduced row echelon form.

[2+2]

(b) Solve the following system.

$$x - 2y + 3z = 1$$

 $2x - 5y + 10z = 0$
 $4x - 7y + 8z = 2$.

[3]

Find the values of k so that the following system has unique solution.

$$x + y + z = 1$$
$$x + 2y + 4z = k$$
$$x + 4y + 10z = k^{2}$$

[3]

2. (a) Draw the column picture for the system 2x + y = 8 and x + 2y = 7.

[3] [3]

[4]

[3]

[3]

[3]

[3]

- Determine if (2, -1, 6) is a linear combination of the vectors (1, -1, 2), (5, -4, 4) and (3, -2, 8).
- (c) Express the vector (2,5,7) as a linear combination of the three vectors (1,2,3), (1,0,1) and (1,3,4).
- Find the value of h such that the vector (1, h, 1) is in the plane spanned by the vectors (3, 5, 4) and (2, 4, 3).
 - (2, 4, 3). (b) Show that two vectors in \mathbb{R}^3 can not span the whole \mathbb{R}^3 .
 - Define linear independence of vectors. Check linear independence of the vectors $\{(1,0,-1,2),(-3,2,-5,4),(5,7,-4,3)\}$.
 - 4. (a) Find the values of h so that $\{(1, -2, -1, 3), (-3, 0, 5, 4), (-5, 6, -4, h)\}$ is linearly independent.
 - (b) Let $\alpha, \beta \in \mathbb{R}^3$. Show that α and β are linearly independent if and only if they span a plane through the origin. [4]
 - Define subspaces of \mathbb{R}^n . Show that $V = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 3y z = 0\}$ is a subspace of \mathbb{R}^3 .
- 5. (a) Let $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{R}^4$ and $A = (\alpha_1 | \alpha_2 | \alpha_3 | \alpha_4)$. Show that $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ is a basis of \mathbb{R}^4 if and only if A is invertible. [4]
 - (b) Find the null space of the matrix $\begin{pmatrix} 1 & 2 & 4 \\ 0 & 4 & 1 \\ 3 & 2 & 11 \end{pmatrix}$ and a spanning set of the null space. [3]
 - (c) Let $A \in M_3(\mathbb{R})$ and $b \in \mathbb{R}^3$. If the system AX = b has a unique solution, then show that r(A) = 3. Hence or otherwise show that the columns of A span \mathbb{R}^3 .

[4]

[3]

[3]

[7]

[4]

[6] [5]

[2]

[3]

- 6. (a) Show that every subspace of \mathbb{R}^n has a basis.
 - (b) Find a basis and the dimension of the subspace $V = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 3y z = 0\}$.
 - (c) Find a basis of the solution space of the homogeneous system:

$$x - 2y + z = 0$$

$$2x + 3y - 4z = 0$$

$$4x - y - 2z = 0.$$

Unit-II: Analysis II (Marks: 20) Answer any two questions.

1. (a) Find y_n where $y = e^x \sin^2 x$.

(b) If $y = Sin^{-1}x$ then show that

(i)
$$(1-x^2)y_2 - xy_1 = 0$$
.

(i)
$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0.$$

Find also the value of $(y_n)_0$.

- 2. (a) Evaluate $\lim_{x\to 0} (\frac{1}{x^2})^{tanx}$.
 - (b) Find the values of a and b in order that

$$\lim_{x \to 0} \frac{x(1 + aCosx) - bSinx}{x^3} = 1.$$

- 3. (a) State and prove Rolle's theorem.
 - (b) Verify Rolle's theorem for the function f defined in [1,2] by f(x) = x(x-1)(x-2).
 - In the Mean Value Theorem, $f(x+h) = f(x) + hf'(x+\theta h)$, if $f(x) = a + bx + cm^x$ where a, b, c and m are constants, then show that θ is independent on x.