Undergraduate Examination-2024

Semester-II Mathematics MJMA03 (Algebra III)

Full Marks: 80

Time: Four Hours

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

choosing four questions from each group

Answer any eight questions, by choosing four questions	
Group-A(Group Theory) Answer any four questions. $(4 \times 10 = 40)$	
1. (a) For $n \geq 3$, let $H = \{\beta \in S_n \beta(1) = 1 \text{ or } 2 \text{ and } \beta(2) = 1 \text{ or } 2\}$. Prove that H is a subgroup of S_n . Determine $ H $ for $n = 5$.	[3+1] [2+2]
Explain why S_8 contains subgroups isomorphic to \mathbb{Z}_{15} and $U(16)$?	[2]
(c) Let $\beta \in S_7$ and suppose $\beta^4 = (2143567)$. Find β .	[1+3]
2. (a) State and Prove Lagrange's Theorem on finite groups. (b) Let H be a subgroup of \mathbb{R}^* , the group of nonzero real numbers under multiplication. If $\mathbb{R}^+ \subseteq H \subseteq \mathbb{R}^*$,	[3]
(c) Let $ G = 33$. What are the possible orders for the elements of G ? Show that G must not of order 3.	[2+1]
(a) Let G be a group of order 100 that has a subgroup H of order 25. Show that every element of G of order 5 is in H .	[4] [3]
 (b) Prove that an Abelian group of order 15 is cyclic. (c) Let H and K be subgroups of a finite group G with H ⊆ K ⊆ G and [G: H] a prime number. Show that either H = K or K = G. 	[3]
4. (a) Does the subgroup $H = \{(1), (12)(34)\}$ normal in A_4 ? Justify your answer.	[2]
(b) What is the order of the element $14+<8>$ in the factor group $\mathbb{Z}_{24}/<8>$ is the example of non-commutative group that have a cyclic quotient group. Justify your answer.	[2+1]
(c) If a factor group G/Z(G) has order p² for some prime p, to what familiar group is G/Z(G) isomorphic? Explain why there is no group G with the property that G/Z(G) is isomorphic to the group of integers under addition.	[3+2]
(a) Show that subgroup of a group with index 2 is normal. Give an example of a normal subgroup in group with index greater than 2. Justify your answer.	[2+3]
(b) Show that every subgroup of an Abelian group is normal. Give an example with proper justification of a non commutative group every subgroup of which is normal.	[2+3]
6. (a) State and prove First Isomorphism Theorem on groups.	[1+4]
(b) Suppose that ϕ is a homomorphism from S_4 onto \mathbb{Z}_2 . Determine Ker ϕ .	[2]
(c) Find all homomorphisms from \mathbb{Z}_6 to S_3 .	[3]
Group-B(Ring Theory) Answer any four questions. $(4 \times 10 = 40)$	
7. (a) Describe the units of $M_2(\mathbb{Z})$.	[3
(b) Let R be a ring. If $(R, +)$ is a cyclic group, show that R is a commutative ring.	[3
Let R be a commutative ring with unity. If a_0 is a unit and a_1, a_2, \dots, a_n are nilpotents in R, show	-

	(a) Describe the units of $M_2(\mathbb{Z})$.
/	(b) Let R be a ring. If $(R, +)$ is a cyclic group, show that R is a commutative ring.
	Let R be a commutative ring with unity. If a_o is a unit and a_1, a_2, \dots, a_n are nilpotents in R , show that $a_o + a_1x + a_2x^2 + \dots + a_nx^n$ is a unit in $R[x]$.
8.	(a) Give an example of an infinite Boolean ring with justification.
(e	Prove that \mathbb{Z}_n is a field if and only if p is a prime number.

[4] [3]

[3]

[4]

[3]

[3]

[4]

[4]

[3]

[3]

 \mathcal{S} . (a) Let R be a finite commutative ring with unity. Show that every nonzero element of R is a unit or a

(b) Show that the set of all nilpotent elements of a commutative ring form an ideal.

List all the nilpotent elements of \mathbb{Z}_{100} . Find the total number of nilpotent elements of $\mathbb{Z}_{p^mq^n}$ where p,q are prime numbers and m,n are positive integers.

10. (a) Give an example with justification of an infinite integral domain that has characteristic 3.

- Does there exist any subring of $\mathbb{Z} \times \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \times \mathbb{Z}$? Show that every subring of \mathbb{Z} is an ideal of Z.
 - Let R be a ring with 1 and has no divisors of zero. Show that for every $a, b \in R$, ab = 1 if and only if
- 11. (a) Show that the factor ring $\mathbb{R}[x]/< x^2+1>$ is a field.
 - (b) Determine all ideals of R × R.
 - (c) Let m and n be two positive integers and $d = \gcd(m, n)$. Show that $\langle m, n \rangle = \langle d \rangle$.
- 12. (a) Prove that the ideal $I = \{(3x, y) \mid x, y \in \mathbb{Z}\}$ is not properly contained in any proper ideal of $\mathbb{Z} \times \mathbb{Z}$.
 - (b) Give an example of a ring that has exactly two proper nontrivial ideals. Justify.
 - (c) Prove that the ring $M_n(\mathbb{R})$ of all $n \times n$ real matrices has no nontrivial proper ideals.

Undergraduate Examination-2024

Semester-II Mathematics Core Course: MJMA04 (Differential Equations-I)

Full Marks: 80

[4+2]

[3+3]

[5+1]

(Difference 7	
Time: Three Hours Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.	
Overtion No. 1 and any ten from the rest.	
Answer Question 1.5 $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	20]
 Answer any ten questions from the following. (a) Find the non-zero value of n for which the differential equation (nx³ + 3x²y)dy = 0 is an exact differential equation. (b) Solve the differential equation 3x(xy - 2)dx + (x³ + 2y)dy = 0. (c) Find an integrating factor of the differential equation dy/dx = (2xy²+y/x-2y³). (d) Find the orthogonal trajectories of the family of parabolas y = cx². (e) Solve the nonlinear differential equation (dy/dx)² + (ex + ex) dy/dx + 1 = 0. 	[2] [2] [2] [2] [2]
Solve the nonlinear differential equation $\frac{dx}{dx}$	[2]
$(x) = (x)^2 + 9)^3 (D^2 - 10)^2 y = 0.$	[2]
 (g) Solve the differential equation ^{d³y}/_{dx³} = xe^x. (h) Find a second order linear homogeneous differential equation whose linearly independent solutions are x, and xe^x. (i) Solve the boundary value problem ^{d²y}/_{dx²} + y = 0, y(0) = 0, y(π/2) = 1. (j) Find two different solutions of the differential equation ^{dy}/_{dx} = y^{1/3}, y(0) = 0. (k) Solve: ^{d²y}/_{dx²} = 8y³. 	[2] [2] [2]
Find the singular solution of the differential equation $y = px + p^2$.	[2]
Find the singular solution of the differential equations of	[2]
$(m) Solve: \frac{d^4y}{dx^4} - \cot x \frac{d^3y}{dx^3} = 0.$	
(n) Solve the differential equation $\frac{d^2y}{dx^2} + (\frac{dy}{dx})^2 + 1 = 0$.	[2]
Solve: $\frac{d}{dx}(x\frac{dy}{dx}) = x$; $y(1) = 0$, $\frac{dy}{dx} _{x=1} = 0$.	[2]
2. Obtain the differential equation of family of circles $x^2 + y^2 + 2gx + 2fy + c = 0$, where g , f and c are parameters.	[6]
Solve the homogeneous equation $(x^2 - xy + y^2)dx - xydy = 0$.	[6
4. If $e^{\int \phi(x)dx}$ is an integrating factor of the differential equation $M(x,y)dx + N(x,y)dy = 0$, then find the expression of $\phi(x)$. Hence solve the equation $2ydx + xdy = 0$.	[4+2
Show that if f is any solution of the differential equation $\frac{dy}{dx} = A(x)y^2 + B(x)y + C(x)$, then the transformation $y = f + \frac{1}{v}$ reduces the above differential equation to a linear equation in v. Hence solve the equation $\frac{dy}{dx} = (1-x)y^2 + (2x-1)y - x$; given solution $f(x) = 1$.	[4+:

 $P(x)y + Q(x)y^n$ to a linear equation in v. Hence solve the equation $\frac{dy}{dx} + y = xy^3$. Solve the differential equation $\frac{dy}{dx} + y = f(x)$ with initial condition y(0) = 0, where f(x) = 2, when $0 \le x < 1$ and f(x) = 0, when $x \ge 1$. Hence find the value of y(5).

Prove that the transformation $v = y^{1-n} (n \neq 0 \text{ or } 1)$ reduces the Bernoulli equation $\frac{dy}{dx} =$

- 8 Find the orthogonal trajectories of the family of curves $r^n sin(n\theta) = c^n$, c being the param-
- Find a family of oblique trajectories that intersect the family of straight lines y = cx at
- [6] angle 45°. 10. Solve the nonlinear differential equation $y^2 log(y) = xyp + p^2$.
- \mathcal{M} . Reduce the equation (px-y)(x-py)=2p to Clairaut's form by the substitution $x^2=u$ [5+1]and $y^2 = v$. Hence solve the equaion. [6]
- Solve the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$. [6]
- 13. Solve: $\frac{d^2y}{dx^2} 2\frac{dy}{dx} = e^{2x} sinx.$ [6]
- Solve the Cauchy-Euler equation $x^2y'' 4xy' + 6y = log(x^2), x > 0.$ (15) Using the method of variation of parameters, solve the equation $(D^2 + 1)y = secx \ tanx$. [6]
 - 16. Test for exactness and solve the differential equation $(1+x^2)y'' + 4xy' + 2y = \sec^2 x$; given [2+4]that y(0) = 0 and y'(0) = 1.

Use separate answer script for each unit

Undergraduate Examination-2024

Semester-II (NEP)
Mathematics
Course: SECMA - 02
(Analysis-II and Tensor Calculus)

Full Marks: 60

Time: 3 Hours

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Unit I: Analysis - II (Full Marks: 20)

Answer any two questions

What do you mean by the limit of a function f(z) when z approaches z_0 ? Explain with examples. Show that such a limit, if exists, is unique.

Prove, using ϵ - δ notations, that $f(z) = \frac{1}{\overline{z}}$ is continuous at z = i.

(c) Find the stereographic projection of the straight line 19x + 8y = 24 on the Riemann sphere $\xi^2 + \eta^2 + \left(\zeta - \frac{1}{2}\right)^2 = \frac{1}{4}$. [(2+3)+3+2]

- 2. (a) Use ϵ - δ notations to prove $\lim_{z \to -1} \frac{z^2 + 7z + 9}{2z + 5} = 1$.
 - (b) When does a complex sequence $\{z_n\}$ converge to a limit z? Explain with examples. Find the limit points of the sequence $\{i^n + \frac{1}{n}\}$.
 - (c) Describe, in detail, how a point z = x + iy on the complex plane is stereographically projected onto a point (ξ, η, ζ) on a suitable sphere. [3+(2+2)+3]
- 3. (a) Examine whether the limit $\lim_{z\to 0} \frac{\bar{z}^2}{z}$ exists. Hence find the value of $\lim_{z\to 0} \frac{\bar{z}^2 e^{\frac{i}{|z|}}}{z}$.
- (b) If f(z) and g(z) are continuous at z_0 and $c \in \mathbb{C}$, show that cf(z)+g(z) is continuous at z_0 .
- Prove that a convergent sequence is bounded.

Unit-II: Tensor Calculus (Full Marks: 40)

Answer any four questions

- 1. (a) Define dummy index and free index in an indexed expression. Using summation convention, expand $\delta^i_j a^{jk}$ and prove that it equals a^{ik} .
 - (b) Define e-systems of order 2 and prove that $e_{ij}e^{ik}=\delta_k^j$.
 - (c) If $a_{pq}x^px^q=0$ for all values of the independent variables x^1,\ldots,x^n and a_{pq} 's are [3+3+4]constants, then prove that $a_{ij} + a_{ji} = 0$.
- 2. (a) If $x^i = a_p^i y^p$ and $z^i = b_q^i x^q$, then prove that $z^i = b_p^i a_q^p y^q$.
 - (b) Using summation convention, compute $\delta^i_k \delta^k_\ell \delta^l_i$ and $\delta^i_j \delta^j_\ell \delta^k_k \delta^k_i$.
 - (c) Prove that $e_{imn}e^{irs}a^{mn}=a^{rs}-a^{sr}$.

[2+4+4]

- 3. (a) If A^i and B_i are respectively contravariant and covariant vectors, then prove that A^iB_i is an invariant.
 - (b) If A^i and B^j are two contravariant vectors, then prove that the n^2 quantities A^iB^j are the components of a contravariant tensor of rank 2.
 - (c) Define mixed tensors of rank 3 with first order of contravariance and second order [3+3+4]of covariance and vice versa.
- 4. (a) If the co-ordinates of a tensor are all zero in one co-ordinate system, then prove that they are all zero in every other co-ordinate system.
 - (b) Prove that the outer multiplication of two mixed tensors of types (p,q) and (r,s)is a mixed tensor of type (p+r, q+s).
 - (c) Let $p \ge 6$ and $q \ge 3$ be two integers. Can you obtain a tensor of type (p-5, q-2)from a tensor of type (p,q) via finite number of contractions? Justify your answer. [3+4+3]
- 5. (a) Let A_i be a covariant vector, determine, with proof, whether $\frac{\partial A_i}{\partial x^i}$ is a tensor or not.
 - (b) If a_{ij} is a skew-symmetric tensor, then prove that $(\delta_i^i \delta_\ell^k + \delta_\ell^i \delta_i^k) a_{ik} = 0$.
 - (c) If a tensor T_{ijk} is symmetric in the first two indices and skew-symmetric in the last two indices, then prove that $T_{ijk} = 0$. [4+3+3]
- 6. Prove that the scalar product of a relative covariant vector of weight ω and a relative contravariant vector of weight ω' is a relative scalar of weight $(\omega + \omega')$.
 - (b) Prove that the determinant of a tensor of type (1,1) is an invariant.
 - (c) Determine, with proof, the number of distinct components of a completely symmetric tensor of type (0,3) where the indices assume values from 1 to n.

[3+3+4]