M. Sc. Examination-2024 Semester-I Mathematics Paper: MMC-11 (Real Analysis)

Time: 3 Hours

Full Marks: 40

[4]

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any four questions.

	1.	(a)	What do you mean by the outer measure $m^*(A)$ of a set $A \subset \mathbb{R}$? Give example. Show that m^* is countably sub-additive.	[2+4]
		(b)	Prove or disprove: All intervals are measurable.	[4]
	2.		If E_1, E_2, \cdots are measurable subsets of \mathbb{R} such that $E_1 \subseteq E_2 \subseteq \cdots$, then show that $m\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} m(E_n)$.	[4]
			\n=1 /	
		(b)	When is a property said to hold $a.e.$ on a measurable set A ? Explain with example. If $A \subseteq \mathbb{R}$ is a measurable set and ϕ is an extended measurable function on A and $\phi = \psi$ $a.e.$ on A , show that ψ is measurable on A .	[2+4]
•	3.	(a)	Construct the Canor-Lebesgue function ϕ on $[0,1]$ Show that the function $\psi:[0,1]\longrightarrow \mathbb{R}$ defined by $\psi(x)=\phi(x)+x$ maps a measurable set onto a non-measurable set.	[3+4
		(b)	Let $f:A\longrightarrow [0,\infty)$ be a measurable function on $A\subseteq \mathbb{R}$ such that $\int_A f=0$. Prove that	
			f = 0 a.e. on A.	[3
	4.	(a)	State and prove Fatou's Lemma. Show by an example that it does not hold good unless you take a sequence of non-negative measurable functions.	[4+3
		(b)	If $\{f_n\}$ is a sequence of measurable functions on a set A of finite measure such that $f_n \longrightarrow f$ pointwise $a.e.$ on A and f is finite $a.e$ on A , show that $f_n \longrightarrow f$ in measure on A .	[3
	5.	(a)	Let f be bounded function on a closed and bounded interval $[a, b]$. If f is continuous $a.e.$ on $[a, b]$, show that f is Riemann integrable over $[a, b]$.	[5
		(b)	State Monotone Convergence Theorem and use it to evaluate the Lebesgue integral of the function $f:[0,1] \longrightarrow \mathbb{R}$ defined by $f(x) = \begin{cases} 0 & \text{if } x=0 \\ \frac{1}{x^{\frac{1}{3}}} & \text{if } 0 < x \leq 1. \end{cases}$	[1+4
		()	(25	
	6.	(a)	Let $\{f_n\}$ be a sequence of bounded measurable functions on a set E of finite measure. If $f_n \longrightarrow f$ uniformly on E , show that $\lim_{n \to \infty} \int_E f_n = \int_E f$. Does the conclusion hold if $f_n \longrightarrow f$	[4+2
		(1-)	pointwise only on E ? Justify your answer. Let a function $f: X = [1, \infty) \longrightarrow \mathbb{R}$ be given by $f(x) = \frac{1}{2^n}$ if $n \le x < n+1$. Show that	[112
		(D)	Let a function $f: X = [1, \infty) \longrightarrow \mathbb{R}$ be given by $f(x) = \frac{1}{2^n}$ if $n \le x < n + 1$. Show that $\int_X f = 1$.	[4

M. Sc. Examination - 2024 Semester-I Mathematics Paper: MMC 12

(Complex Analysis)

Time: 3 Hours

Full Marks: 40

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any four questions.

1.	(a)	State and prove Maximum modulus theorem.	[1+3]
	(b)	Using Maximum modulus theorem show that if $ f(z) > M$ on $ z = R$, $f(z)$ is regular	
	()	for $ z \le R$ and $ f(\alpha) < M$, $ \alpha < R$, then $f(z)$ has at least one zero in $ z < R$.	[2]
	(c)	State and prove Taylor's theorem.	[1+3]
2.		State Laurent's theorem.	[2]
	(p)	Expand $f(z) = \frac{1}{z(z-1)(z-2)}$ in Laurent series in the region $1 < z < 2$.	[3]
		State and prove Riemann's theorem on removable singularity.	[3]
	(d)	Show that if $f(z) = (z - \alpha)^n \phi(z)$, where $\phi(z)$ is analytic at α and $\phi(\alpha) \neq 0$ then α is a zero of $f(z)$ of order n .	[2]
3.	(a)	State and prove open mapping theorem.	[1+3]
	(b)	If α be a pole of $f(z)$ of order m and a pole of $g(z)$ of order $n(>m)$ then what kind of a point α relative to the function $f(z) - g(z)$.	[2]
	(c)	If $f(z)$ has a pole of multiplicity m at $z = \alpha$, then show that the residue of $f(z)$ at α is given by	
		$\frac{1}{(m-1)!}\lim_{z\to\alpha}\frac{d^{m-1}}{dz^{m-1}}[(z-\alpha)^m f(z)].$	[3]
	(d)	State Riemann mapping theorem.	[1]
4.	(a)	Determine the nature of the singularities of $cosec\frac{1}{z}$.	[3]
	(b)	If $f(z) = \frac{P(z)}{Q(z)}$, where $P(z)$ and $Q(z)$ are analytic at α and $P(\alpha) \neq 0$, while α is a	
		simple zero of $Q(z)$, then prove that α is a simple pole of $f(z)$ with residue $\frac{P(\alpha)}{Q'(\alpha)}$.	[3]
	(c)	State and prove Cauchy's residue theorem. Using this theorem evaluate $\oint_{ z =1} \frac{e^{3z}}{(6z-\pi)^2} dz$.	[3+1]
5.		State and prove Rouche's theorem.	[1+3]
	(b)	If $k > 1$, show that the equation $z^n = e^{z-k}$ has n roots inside the circle $ z = 1$, n being a positive integer.	[2]
	(c)	Let $f(z)$ be analytic within and on a positively oriented simple closed curve C except	[4]
		for a finite number of poles within C and let $f(z) \neq 0$ any where on C, then show that	
		$\oint_C \frac{f'(z)}{f(z)} dz = i\Lambda_C arg f(z).$	[4]
6.	(a)	If $f(z)$ be a function having only a finite number of singularities then show that the sum of the residues of $f(z)$ in the entire z-plane including the point at infinity is zero.	[3]
		Calculate the residue of $\frac{1}{z^2-1}$ at the point at infinity.	[2]
	(c)	Evaluate any one of the following by the method of contour integration: $f(x) = \int_{-\infty}^{\infty} dx$	
		$(i) \int_{-\infty}^{\infty} \frac{dx}{x^4 + a^4}, (a > 0); (ii) \int_{0}^{\infty} \sin x^2 dx.$	[5]

M. Sc. Examination-2024 Semester-I Mathematics MMC-13(Linear Algebra)

Time: Three Hours

Full Marks:

40 Questions are of values as indicated in the margin. (V is a finite dimensional vector space over F.)

Answer any four questions.

			[9]
1.	(a)	Let $A \in M_n(F)$ and $\lambda \in F$. Show that λ is an eigen value of A if and only if $ A - \lambda I_n = 0$. Let λ be an eigen value of a matrix $A \in M_n(F)$. Show that the geometric multiplicity of λ	[3]
		= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	[3]
		Let X, Y be two nonzero column vectors in \mathbb{R}^n and $A = XY^t$. Show that 0 is an eigen value of A and every eigen vector corresponding to 0 is orthogonal to Y .	[4]
2.		Let $T: V \longrightarrow V$ be a linear operator, β be a basis of V and λ be an eigen value of T . Show that $v \in V$ is an eigen vector of T corresponding to λ if and only if $[v]_{\beta}$ is an eigen vector of $[T]_{\beta}$ corresponding to λ .	[4]
		Let $T: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$ be defined by $T(A) = A^t$. Find all eigen values and eigen spaces of T .	[3]
		Let $T: V \longrightarrow V$ be a linear operator. If every nonzero vector of V is an eigen vector of T , then show that $T = cI$ for some scalar c .	[3]
3.*		Let $T:V\longrightarrow V$ be a linear operator. Prove that the eigen vectors belonging to the distinct eigen values are linearly independent.	[4]
		Let $T: V \longrightarrow V$ be a linear operator and V be a T -cyclic space. If a linear operator $S: V \longrightarrow V$ commutes with T , then show that $S = g(T)$ for some polynomial $g(t)$.	[3]
	(c)	Let $T: V \longrightarrow V$ be a linear operator, $v \in V$ and $W = \langle v \rangle_T$. If dim $W = k$, then show that $\{v, T(v), \dots, T^{k-1}(v)\}$ is a basis of W .	[3]
4.	(a)	Let $A \in M_n(F)$. If F^n has a basis of eigen vectors of A, then show that A is diagonalizable.	[3]
	(b)	State and prove the spectral theorem for the diagonalizable linear operators.	[4]
	(c)	Show that two reflections R_1 and R_2 on a vector space are similar if and only if dim $E_1(R_1) = \dim E_1(R_2)$.	[3]
5 .		Let $T: V \longrightarrow V$ be a linear operator and $f(t) \in F[t]$ be such that $f(t) = g(t)h(t)$ for some $g(t), h(t) \in F[t]$. If $gcd(g(t), h(t)) = 1$, then show that $\ker f(T) = \ker g(T) \oplus \ker h(T)$.	[4]
	(b)	Give an example with justification of a non-diagonalizable matrix $A \in M_3(\mathbb{R})$ which satisfies $A^k = I_3$ for some $k \in \mathbb{N}$.	[3]
	(c)	Let $X, Y \in \mathbb{R}^n$ be two nonzero column vectors. If $X \perp Y$, then show that the matrix $A = XY^t$ is not diagonalizable.	[3]
6.	(a)	Let $T: V \to V$ and $\beta = \{v_1, v_2, \dots, v_n\}$ be a basis of V . Then prove that $[T]_{\beta}$ is upper triangular if and only if $T(v_j) \in span(\{v_1, v_2, \dots, v_j\})$ for all $1 \leq j \leq n$.	[4]
	(b)	Let $T: V \longrightarrow V$ and $\chi_T(t) = (t - \lambda_1)^{n_1} (t - \lambda_2)^{n_2} \cdots (t - \lambda_k)^{n_k}$ where $\lambda_1, \lambda_2, \cdots, \lambda_k$ are distinct eigen values of T . Show that $\dim(T - \lambda_i I)^{n_i} = n_i$ for all $1 \le i \le k$.	[3]
	(c)	Find all possible Jordan canonical forms of a linear operator T such that $\chi_T(t) = (t-2)^5$ and $m(t) = (t-2)^2$. In each case find dim E_2 .	[3]
		*	

Use separate answer script for each unit

M.Sc. Examination-2024

Semester-I Mathematics MMC 14 (Ordinary Differential Equations)

Time: Three Hours

Full Marks: 40

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any four questions.

	1.	(a) With a suitable example show that Lipchitz Criteria is a weaker concept than Picard's condition for uniqueness of solutions of a first order IVP.	
		(b) What is meant by Interval of Definition for the solution of an IVP. Find the Interval of Definition for the solution of the following IVP. $\frac{d^3x}{dt^3} + \frac{1}{t^2-4}x = \cos(t), \qquad x(1) = 3, x'(1) = 0, x''(1) = 0$	[2]
	($\frac{dt^3}{dt^3} + \frac{1}{t^2 - 4}x = \cos(t), x(1) = 3, x'(1) = 0, x''(1) = 0.$ (c) Show that the initial value much $\frac{dt}{dt} = 0$.	[1+2]
	((c) Show that the initial value problem $\frac{dy}{dx} = (y-1)/x$, $y(0) = 1$ has infinite solutions.	
		d) Find the third approximation of the solution of the equation $\frac{dy}{dx} = z$, $\frac{dz}{dx} = x^3(y+z)$ by the Picard's Method where $y = 1, z = \frac{1}{2}$ where $x = 0$.	(-)
2	. (:	What is a Wronskians? State and prove Abel's Theorem for a and order ODE. Hence show that the	[3]
	(1	when a set of solutions is said to be Fundamental? What do you mean by a Natural Fundamental Sets of Solutions? Find the Natural Fundamental set of solutions of the following Differential Equations $y'' - y' - 2y = 0$, with the initial time 0.	[1+3+1]
3.	(a	Find the nature and stability of the fixed points of $\dot{r} = -ar + c$	[1+1+3]
	,	x - ux + y, $y = -x - ay$	
	(h	For the different values of the parameter a.	[6]
	(D) Draw the phase diagrams for the linear harmonic undamped oscillators represented by $\ddot{x} + \omega^2 x = 0$.	[3] [2]
	(c	Find the solution of the non-homogeneous differential equation $\dot{x} = Ax + F(t)$, where $A = \begin{bmatrix} 6 & -3 \\ 2 & 1 \end{bmatrix}$	[2]
		and $F(t) = \begin{bmatrix} e^{5t} \\ 4 \end{bmatrix}$	[5]
4.	(a)	State and prove Sturm Separation Theorem.	[6]
	(b)	Let f and g be any two solutions of $\frac{d}{dt} \left[P(t) \frac{dx}{dt} \right] + Q(t)x = 0$ on the interval $a \le t \le b$. Then show that for all t on $a \le t \le b$.	[4]
	(c)	If $A = \begin{bmatrix} a & -b \\ b & c \end{bmatrix}$, then prove that $e^{At} = e^{alt}[l\cos(bt) + l\sin(bt)]$, $e^{alt}[l\cos(bt)] = a$, where $e^{alt}[l\cos(bt)] = a$.	[3]
5	(0)	If $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then prove that $e^{At} = e^{aIt}[I\cos(bt) + J\sin(bt)]$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.	[3]
0.	(4)	Solve the boundary-value problem $x^2y'' - 3xy' + 3y = 24x^5$, $y(1) = 0, y(2) = 0$. by using Green's function.	
	(b)	Solve the initial-value problem	[6]
		y'' + 4y = x, $y(0) = 0$, $y'(0) = 0$. by using Green's function.	1.0
6.	(a)	State and prove Gronwell's inequality.	[4]
((b)	Find the eigenvalue and eigen-functions of the following Strum-Liouville's system $\frac{d^2y}{dx^2} + \lambda y = 0, \ y(0) = y'(0), \ y(\pi) = y'(\pi).$	[1+4]
			[5]

PURCHA - -

M. Sc. Examination-2024 Semester-I Mathematics Paper: MMC 15 (Partial Differential Equations)

Time: 3 Hours

Full Marks: 40

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer any four questions.

1. (a) When is a partial differential equation (PDE) said to be well-posed in the sense of Hadamard? [2]

(b) Solve the the following Cauchy problem and find the value of $u(1/\sqrt{2}, 1/\sqrt{2})$.

$$x\frac{\partial u}{\partial y} - y\frac{\partial u}{\partial x} = u,$$

$$u(x,0) = \sin\left(\frac{\pi x}{4}\right).$$

Also, characterize the nature of the integral surface so obtained.

[3+1]

(c) Obtain the singular integral of the following PDE and give its geometrical interpretation.

$$\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} - u\right)^2 = 1 + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2.$$

[4]

2. (a) Find by the Cauchy's method of characteristics the integral surface of the following PDE that passes through the curve u = y, x = 0.

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{\partial u}{\partial x}\frac{\partial u}{\partial y}.$$

[5]

(b) Show that a linear PDE of the form $\sum_{r,s} C_{rs} x^r y^s \frac{\partial^{r+s} u}{\partial x^r \partial y^s} = f(x,y)$ can be reduced to one with constant coefficients by the substitutions: $\xi = \log_e x$ and $\eta = \log_e y$. Hence, find the complete integral of the following PDE.

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} - 3xy \frac{\partial^{2} u}{\partial x \partial y} + 2y^{2} \frac{\partial^{2} u}{\partial y^{2}} + 5y \frac{\partial u}{\partial y} - 2u = \cos \left[\log_{e}(xy) \right].$$

[(1+4)]

3. (a) Solve the following PDE by Monge's method.

$$xy\left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2}\right) - (x^2 - y^2)\frac{\partial^2 u}{\partial x \partial y} + y\frac{\partial u}{\partial x} - x\frac{\partial u}{\partial y} = 0.$$

[5]

(b) Find the two families of characteristics of the PDE, given by,

$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = e^{2x+3y}$$

and hence convert the equation to a canonical form.

[(2+3)]

4. (a) Using Laplace integral transform method, solve the following initial boundary value problem (IBVP):

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} - \cos(2t), \ 0 \le x < \infty, 0 \le t < \infty,$$

BC's: $u(0,t)=0,\ u(x,t)$ is bounded as $x\to\infty,$ IC's: $u(x,0)=0,\ \frac{\partial u}{\partial t}|_{(x,0)}=0.$

(b) Solve the following PDE by using the finite Fourier sine transform method:

$$\begin{array}{rcl} \frac{\partial u}{\partial t} & = & 4\frac{\partial^2 u}{\partial x^2}, \; 0 < x < 2, \; t > 0, \\ u(0,t) & = & 0 \; = \; u(2,t), \; t > 0, \\ u(x,0) & = \; \left\{ \begin{array}{l} x, \; 0 \leq x \leq 1 \\ 2 - x, \; 1 \leq x \leq 2. \end{array} \right. \end{array}$$

5. (a) Find the value of u(2,3) for the following PDE.

$$\frac{\partial^2 u}{\partial x \partial y} + x^3 y^2 u = 0,$$

$$u(x,0) = e^{(x^4/4)}.$$

[4]

[3]

[3]

[2]

[2]

(b) If $u(x,t) = Ae^{-t}\sin x$ is a solution of the following IBVP, then find the value of A.

$$\begin{array}{rcl} \frac{\partial u}{\partial t} & = & \frac{\partial^2 u}{\partial x^2}, \ 0 < x < \pi, \ t > 0, \\ u(0,t) & = & 0 = u(\pi,t), \ t > 0, \\ u(x,0) & = & \left\{ \begin{array}{ll} 60, \ 0 \le x \le \frac{\pi}{2}, \\ 40, \ \frac{\pi}{2} \le x \le \pi. \end{array} \right. \end{array}$$

(c) Let u(x,t) be a function that satisfies the PDE:

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2} = e^x + 6t, \ x \in \mathbb{R}, \ t > 0,$$

with $u, \frac{\partial u}{\partial x} \to 0$ as $x \to \pm \infty$ and the initial conditions: $u(x,0) = \sin x, \frac{\partial u}{\partial t}|_{(x,0)} = 0$ for every $x \in \mathbb{R}$. Find the value of $u(\frac{\pi}{2}, \frac{\pi}{2})$.

- 6. (a) State maximum-minimum principle for a function u(x,y), which is continuous in a closed region: $\mathbb{R} (= \mathbb{R} \cup \partial \mathbb{R})$ and which satisfies the Laplace equation: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the interior of \mathbb{R} .
 - (b) Prove that, if the Dirichlet problem has a solution u(x,y), which is continuous in a bounded region: \mathbb{R} and which satisfies the Laplace equation: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the interior of \mathbb{R} , then it is unique.
 - (c) Solve the following Neumann problem for a rectangle.

PDE:
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, $0 \le x \le a$, $0 \le y \le b$,
BC's: $\frac{\partial u}{\partial x}|_{(0,y)} = 0 = \frac{\partial u}{\partial x}|_{(a,y)}$, $\frac{\partial u}{\partial y}|_{(x,0)} = 0$, $\frac{\partial u}{\partial y}|_{(x,b)} = f(x)$. [6]

M. Sc. Examination-2024

Semester-I **Mathematics**

Paper: MMC-16

(Integral Transforms and Integral Equations)

Time: Three Hours Full Marks: 40

Questions are of values as indicated in the margin. Notations and symbols have their usual meanings.

Answer Question No. 1 and any three from the rest.

		swer any five questions from the following: $[5 \times 2]$	2 = 10
	/(a)	Find the value of the integral $\int_{0}^{\infty} te^{-5t} \cos 3t dt$.	[2
	√ (b)	Find the inverse Fourier transform of $F(s)$, where $F(s) = \frac{1}{7+8is-s^2}$.	[2
	(c)	Find the value of λ for which the integral equation $y(x) = \lambda \int_{0}^{1} x^{3}t^{3}y(t)dt$ has infinitely	
		many solutions.	[2]
	(d)	Solve the Fredholm integro-differential equation	[2.
		$u'(x) = 9x^2 + \int_0^1 xu(t)dt, \ u(0) = 1.$	[2]
	√ (e)	Find the Laplace transform of $f(t)$, where $f(t) = e^{2t}$ when $0 < t < 5$ and $f(t) = t - 2$ when $t > 5$.	[0]
	₹(f)	Using modified Adomian decomposition method, solve the integral equation $y(x) = \cos x - (1 - e^{\sin x})x - x \int_0^x e^{\sin t} y(t) dt$.	[2]
	J (g)	Find the value of $u(2) + u(5)$, where $u(x)$ satisfies the equation $xe^{-x} = \int_0^x e^{t-x} u(t) dt$.	[2]
2.	(a)	Find the resolvent kernel of the integral equation $y(x) = (1+x^2)^7 + 7 \int_0^x \frac{1+x^2}{1+t^2} y(t) dt$.	[2]
	(b)	Convert the integral equation $y(x) = \int_0^x (x-t)y(t) dt - x \int_0^1 (1-t)y(t) dt$ into an equivalent differential equation.	[4]
	(c)	Solve Volterra integral equation of first kind $\int_0^x (1-x^2+t^2)y(t) dt = \frac{x^2}{2}.$	[2]
	(d)	Solve the Volterra integro-differential equation $\frac{dy}{dx} = x + \int_0^x y(x-t)\cos t dt$, $y(0) = 4$.	[2] [2]
3.	(a)	State Fredholm alternative theorem. Show that the integral equation	
		$y(x) = f(x) + \frac{1}{\pi} \int_0^{2\pi} \sin(x+t)y(t) dt$	
		possesses no solution for $f(x) = x$, but it possesses infinitely many solutions when $f(x) = 1$.	
	(b)	Using Laplace transform, solve the initial value problem $\frac{d^2y}{dt^2} + y = e^{-t}; y(0) = 5, y'(0) = 7.$	[1+4]
		$at^2 \cdot y \cdot y(0) = 0, y(0) = 1.$	[2]

(c) If f and g are piecewise continuous on $[0,\infty)$ and of exponential order then prove that $L\{f * g\} = L\{f\}.L\{g\}.$ Using the above result, find the inverse Laplace transform of the function $\frac{1}{s^2(s-1)}$. [2+1]4. (a) Transform the differential equation $\frac{d^2y}{dx^2} + xy = 5$, y(0) = 0, y(1) = 1 into an equivalent integral equation. [4](b) Using Hilbert-Schmidt theorem, solve the integral equation $y(x) = x + \frac{1}{\pi} \int_0^1 (1 - 3xt) y(t) dt.$ [4](c) Prove that $L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} [F(s)]$, where $L\{f(t)\} = F(s)$. [2] 5. Solve the Volterra integral equation $y(x) = x^2 - \int_0^x (x-t)y(t)dt$ by (a) Laplace transform method. [2] (b) series solution method. [2](c) Adomian decomposition method. [2](d) successive approximations method. [2] (e) successive substitutions method. [2] 6. (a) Find the inverse Fourier transform of $F(s) = e^{-s|y|}$. [3] (b) Find the Fourier sine transform of $f(x) = e^{-ax}$. Hence using Persaval's identity, evaluate $\int_{0}^{\infty} \frac{x^2}{(a^2+x^2)(b^2+x^2)} dx.$ [1.5+1.5](c) Find the Fourier cosine transform of f(x), where $f(x) = \cos 2x$ when $0 \le x \le 3$, and f(x) = 0 when x > 3. [2]

[2]

(d) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.